Burst Imaging for Light-Constrained Structure-From-Motion

Images captured under extremely low light conditions are noise-limited, which can cause existing robotic vision algorithms to fail. In this letter we develop an image processing technique for aiding 3D reconstruction from images acquired in low light conditions. Our technique, based on burst photogr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2022-04, Vol.7 (2), p.1040-1047
Hauptverfasser: Ravendran, Ahalya, Bryson, Mitch, Dansereau, Donald G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1047
container_issue 2
container_start_page 1040
container_title IEEE robotics and automation letters
container_volume 7
creator Ravendran, Ahalya
Bryson, Mitch
Dansereau, Donald G.
description Images captured under extremely low light conditions are noise-limited, which can cause existing robotic vision algorithms to fail. In this letter we develop an image processing technique for aiding 3D reconstruction from images acquired in low light conditions. Our technique, based on burst photography, uses direct methods for image registration within bursts of short exposure time images to improve the robustness and accuracy of feature-based structure-from-motion (SfM). We demonstrate improved SfM performance in challenging light-constrained scenes, including quantitative evaluations that show improved feature performance and camera pose estimates. Additionally, we show that our method converges more frequently to correct reconstructions than the state-of-the-art. Our method is a significant step towards allowing robots to operate in low light conditions, with potential applications to robots operating in environments such as underground mines and night time operation.
doi_str_mv 10.1109/LRA.2021.3137520
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2021_3137520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9661324</ieee_id><sourcerecordid>2615511029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-ceb88e040cc250c81772c8cd3887303a598edb9cdce8b5ab62ae15a7751a4e593</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMoWGr3gpsB16l5STNJlrVYLYwIfqxDJvNap9hJTTIL_71TWsTVu4tz74NDyDWwKQAzd9XrfMoZh6kAoSRnZ2TEhVJUqLI8_5cvySSlLWMMJFfCyBEx931MuVjt3KbtNsU6xKJqN5-ZLkKXcnRth03xlmPvcx-RLmPY0eeQ29BdkYu1-0o4Od0x-Vg-vC-eaPXyuFrMK-q5gUw91lojmzHvuWReg1Lca98IrZVgwkmjsamNbzzqWrq65A5BOqUkuBlKI8bk9ri7j-G7x5TtNvSxG15aXoKUgwB-oNiR8jGkFHFt97HdufhjgdmDIzs4sgdH9uRoqNwcKy0i_uGmLEHwmfgFdTphLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615511029</pqid></control><display><type>article</type><title>Burst Imaging for Light-Constrained Structure-From-Motion</title><source>IEEE Electronic Library (IEL)</source><creator>Ravendran, Ahalya ; Bryson, Mitch ; Dansereau, Donald G.</creator><creatorcontrib>Ravendran, Ahalya ; Bryson, Mitch ; Dansereau, Donald G.</creatorcontrib><description>Images captured under extremely low light conditions are noise-limited, which can cause existing robotic vision algorithms to fail. In this letter we develop an image processing technique for aiding 3D reconstruction from images acquired in low light conditions. Our technique, based on burst photography, uses direct methods for image registration within bursts of short exposure time images to improve the robustness and accuracy of feature-based structure-from-motion (SfM). We demonstrate improved SfM performance in challenging light-constrained scenes, including quantitative evaluations that show improved feature performance and camera pose estimates. Additionally, we show that our method converges more frequently to correct reconstructions than the state-of-the-art. Our method is a significant step towards allowing robots to operate in low light conditions, with potential applications to robots operating in environments such as underground mines and night time operation.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3137520</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cameras ; Computer vision ; Computer vision for automation ; Image acquisition ; Image processing ; Image reconstruction ; Image registration ; Machine vision ; Photography ; Robot vision systems ; Robots ; Signal to noise ratio ; SLAM ; Three-dimensional displays ; Underground mines</subject><ispartof>IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.1040-1047</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-ceb88e040cc250c81772c8cd3887303a598edb9cdce8b5ab62ae15a7751a4e593</citedby><cites>FETCH-LOGICAL-c291t-ceb88e040cc250c81772c8cd3887303a598edb9cdce8b5ab62ae15a7751a4e593</cites><orcidid>0000-0003-2540-1639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9661324$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9661324$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ravendran, Ahalya</creatorcontrib><creatorcontrib>Bryson, Mitch</creatorcontrib><creatorcontrib>Dansereau, Donald G.</creatorcontrib><title>Burst Imaging for Light-Constrained Structure-From-Motion</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Images captured under extremely low light conditions are noise-limited, which can cause existing robotic vision algorithms to fail. In this letter we develop an image processing technique for aiding 3D reconstruction from images acquired in low light conditions. Our technique, based on burst photography, uses direct methods for image registration within bursts of short exposure time images to improve the robustness and accuracy of feature-based structure-from-motion (SfM). We demonstrate improved SfM performance in challenging light-constrained scenes, including quantitative evaluations that show improved feature performance and camera pose estimates. Additionally, we show that our method converges more frequently to correct reconstructions than the state-of-the-art. Our method is a significant step towards allowing robots to operate in low light conditions, with potential applications to robots operating in environments such as underground mines and night time operation.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Computer vision</subject><subject>Computer vision for automation</subject><subject>Image acquisition</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Image registration</subject><subject>Machine vision</subject><subject>Photography</subject><subject>Robot vision systems</subject><subject>Robots</subject><subject>Signal to noise ratio</subject><subject>SLAM</subject><subject>Three-dimensional displays</subject><subject>Underground mines</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEURYMoWGr3gpsB16l5STNJlrVYLYwIfqxDJvNap9hJTTIL_71TWsTVu4tz74NDyDWwKQAzd9XrfMoZh6kAoSRnZ2TEhVJUqLI8_5cvySSlLWMMJFfCyBEx931MuVjt3KbtNsU6xKJqN5-ZLkKXcnRth03xlmPvcx-RLmPY0eeQ29BdkYu1-0o4Od0x-Vg-vC-eaPXyuFrMK-q5gUw91lojmzHvuWReg1Lca98IrZVgwkmjsamNbzzqWrq65A5BOqUkuBlKI8bk9ri7j-G7x5TtNvSxG15aXoKUgwB-oNiR8jGkFHFt97HdufhjgdmDIzs4sgdH9uRoqNwcKy0i_uGmLEHwmfgFdTphLg</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Ravendran, Ahalya</creator><creator>Bryson, Mitch</creator><creator>Dansereau, Donald G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2540-1639</orcidid></search><sort><creationdate>20220401</creationdate><title>Burst Imaging for Light-Constrained Structure-From-Motion</title><author>Ravendran, Ahalya ; Bryson, Mitch ; Dansereau, Donald G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-ceb88e040cc250c81772c8cd3887303a598edb9cdce8b5ab62ae15a7751a4e593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Computer vision</topic><topic>Computer vision for automation</topic><topic>Image acquisition</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Image registration</topic><topic>Machine vision</topic><topic>Photography</topic><topic>Robot vision systems</topic><topic>Robots</topic><topic>Signal to noise ratio</topic><topic>SLAM</topic><topic>Three-dimensional displays</topic><topic>Underground mines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravendran, Ahalya</creatorcontrib><creatorcontrib>Bryson, Mitch</creatorcontrib><creatorcontrib>Dansereau, Donald G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ravendran, Ahalya</au><au>Bryson, Mitch</au><au>Dansereau, Donald G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Burst Imaging for Light-Constrained Structure-From-Motion</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>7</volume><issue>2</issue><spage>1040</spage><epage>1047</epage><pages>1040-1047</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Images captured under extremely low light conditions are noise-limited, which can cause existing robotic vision algorithms to fail. In this letter we develop an image processing technique for aiding 3D reconstruction from images acquired in low light conditions. Our technique, based on burst photography, uses direct methods for image registration within bursts of short exposure time images to improve the robustness and accuracy of feature-based structure-from-motion (SfM). We demonstrate improved SfM performance in challenging light-constrained scenes, including quantitative evaluations that show improved feature performance and camera pose estimates. Additionally, we show that our method converges more frequently to correct reconstructions than the state-of-the-art. Our method is a significant step towards allowing robots to operate in low light conditions, with potential applications to robots operating in environments such as underground mines and night time operation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3137520</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2540-1639</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.1040-1047
issn 2377-3766
2377-3766
language eng
recordid cdi_crossref_primary_10_1109_LRA_2021_3137520
source IEEE Electronic Library (IEL)
subjects Algorithms
Cameras
Computer vision
Computer vision for automation
Image acquisition
Image processing
Image reconstruction
Image registration
Machine vision
Photography
Robot vision systems
Robots
Signal to noise ratio
SLAM
Three-dimensional displays
Underground mines
title Burst Imaging for Light-Constrained Structure-From-Motion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A28%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Burst%20Imaging%20for%20Light-Constrained%20Structure-From-Motion&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Ravendran,%20Ahalya&rft.date=2022-04-01&rft.volume=7&rft.issue=2&rft.spage=1040&rft.epage=1047&rft.pages=1040-1047&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3137520&rft_dat=%3Cproquest_RIE%3E2615511029%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615511029&rft_id=info:pmid/&rft_ieee_id=9661324&rfr_iscdi=true