Recovery RL: Safe Reinforcement Learning With Learned Recovery Zones
Safety remains a central obstacle preventing widespread use of RL in the real world: learning new tasks in uncertain environments requires extensive exploration, but safety requires limiting exploration. We propose Recovery RL, an algorithm which navigates this tradeoff by (1) leveraging offline dat...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2021-07, Vol.6 (3), p.4915-4922 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4922 |
---|---|
container_issue | 3 |
container_start_page | 4915 |
container_title | IEEE robotics and automation letters |
container_volume | 6 |
creator | Thananjeyan, Brijen Balakrishna, Ashwin Nair, Suraj Luo, Michael Srinivasan, Krishnan Hwang, Minho Gonzalez, Joseph E. Ibarz, Julian Finn, Chelsea Goldberg, Ken |
description | Safety remains a central obstacle preventing widespread use of RL in the real world: learning new tasks in uncertain environments requires extensive exploration, but safety requires limiting exploration. We propose Recovery RL, an algorithm which navigates this tradeoff by (1) leveraging offline data to learn about constraint violating zones before policy learning and (2) separating the goals of improving task performance and constraint satisfaction across two policies: a task policy that only optimizes the task reward and a recovery policy that guides the agent to safety when constraint violation is likely. We evaluate Recovery RL on 6 simulation domains, including two contact-rich manipulation tasks and an image-based navigation task, and an image-based obstacle avoidance task on a physical robot. We compare Recovery RL to 5 prior safe RL methods which jointly optimize for task performance and safety via constrained optimization or reward shaping and find that Recovery RL outperforms the next best prior method across all domains. Results suggest that Recovery RL trades off constraint violations and task successes 2-20 times more efficiently in simulation domains and 3 times more efficiently in physical experiments. See https://tinyurl.com/rl-recovery for videos and supplementary material. |
doi_str_mv | 10.1109/LRA.2021.3070252 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2021_3070252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9392290</ieee_id><sourcerecordid>2517033741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-1a746b351b43b3334ed45aefd38d5b4557dbdb37e4034c65c4832e752a4644823</originalsourceid><addsrcrecordid>eNpNkEFLw0AQRhdRsNTeBS8Bz4m7M7vZxFupVoWAEBXBy7JJJppik7qbCv33pqQUT_MNvG8GHmOXgkdC8PQmy-cRcBARcs1BwQmbAGodoo7j03_5nM28X3HOhQKNqZqwu5zK7pfcLsiz2-DF1hTk1LR150paU9sHGVnXNu1n8N70X-NGVXBsfXQt-Qt2VttvT7PDnLK35f3r4jHMnh-eFvMsLCEVfSislnGBShQSC0SUVEllqa4wqVQhldJVURWoSXKUZaxKmSCQVmBlLGUCOGXX492N63625Huz6rauHV4aUEJzRC3FQPGRKl3nvaPabFyztm5nBDd7XWbQZfa6zEHXULkaKw0RHfEUU4CU4x9nnWOu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2517033741</pqid></control><display><type>article</type><title>Recovery RL: Safe Reinforcement Learning With Learned Recovery Zones</title><source>IEEE Electronic Library (IEL)</source><creator>Thananjeyan, Brijen ; Balakrishna, Ashwin ; Nair, Suraj ; Luo, Michael ; Srinivasan, Krishnan ; Hwang, Minho ; Gonzalez, Joseph E. ; Ibarz, Julian ; Finn, Chelsea ; Goldberg, Ken</creator><creatorcontrib>Thananjeyan, Brijen ; Balakrishna, Ashwin ; Nair, Suraj ; Luo, Michael ; Srinivasan, Krishnan ; Hwang, Minho ; Gonzalez, Joseph E. ; Ibarz, Julian ; Finn, Chelsea ; Goldberg, Ken</creatorcontrib><description>Safety remains a central obstacle preventing widespread use of RL in the real world: learning new tasks in uncertain environments requires extensive exploration, but safety requires limiting exploration. We propose Recovery RL, an algorithm which navigates this tradeoff by (1) leveraging offline data to learn about constraint violating zones before policy learning and (2) separating the goals of improving task performance and constraint satisfaction across two policies: a task policy that only optimizes the task reward and a recovery policy that guides the agent to safety when constraint violation is likely. We evaluate Recovery RL on 6 simulation domains, including two contact-rich manipulation tasks and an image-based navigation task, and an image-based obstacle avoidance task on a physical robot. We compare Recovery RL to 5 prior safe RL methods which jointly optimize for task performance and safety via constrained optimization or reward shaping and find that Recovery RL outperforms the next best prior method across all domains. Results suggest that Recovery RL trades off constraint violations and task successes 2-20 times more efficiently in simulation domains and 3 times more efficiently in physical experiments. See https://tinyurl.com/rl-recovery for videos and supplementary material.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3070252</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Constraints ; Domains ; Image manipulation ; Learning ; Navigation ; Obstacle avoidance ; Optimization ; Recovery ; Recovery zones ; Reinforcement learning ; Safety</subject><ispartof>IEEE robotics and automation letters, 2021-07, Vol.6 (3), p.4915-4922</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-1a746b351b43b3334ed45aefd38d5b4557dbdb37e4034c65c4832e752a4644823</citedby><cites>FETCH-LOGICAL-c291t-1a746b351b43b3334ed45aefd38d5b4557dbdb37e4034c65c4832e752a4644823</cites><orcidid>0000-0002-3999-2436 ; 0000-0001-6747-9499 ; 0000-0002-9190-7876 ; 0000-0003-1841-5071 ; 0000-0002-0692-1332 ; 0000-0002-3508-7850 ; 0000-0001-6298-0874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9392290$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9392290$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Thananjeyan, Brijen</creatorcontrib><creatorcontrib>Balakrishna, Ashwin</creatorcontrib><creatorcontrib>Nair, Suraj</creatorcontrib><creatorcontrib>Luo, Michael</creatorcontrib><creatorcontrib>Srinivasan, Krishnan</creatorcontrib><creatorcontrib>Hwang, Minho</creatorcontrib><creatorcontrib>Gonzalez, Joseph E.</creatorcontrib><creatorcontrib>Ibarz, Julian</creatorcontrib><creatorcontrib>Finn, Chelsea</creatorcontrib><creatorcontrib>Goldberg, Ken</creatorcontrib><title>Recovery RL: Safe Reinforcement Learning With Learned Recovery Zones</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Safety remains a central obstacle preventing widespread use of RL in the real world: learning new tasks in uncertain environments requires extensive exploration, but safety requires limiting exploration. We propose Recovery RL, an algorithm which navigates this tradeoff by (1) leveraging offline data to learn about constraint violating zones before policy learning and (2) separating the goals of improving task performance and constraint satisfaction across two policies: a task policy that only optimizes the task reward and a recovery policy that guides the agent to safety when constraint violation is likely. We evaluate Recovery RL on 6 simulation domains, including two contact-rich manipulation tasks and an image-based navigation task, and an image-based obstacle avoidance task on a physical robot. We compare Recovery RL to 5 prior safe RL methods which jointly optimize for task performance and safety via constrained optimization or reward shaping and find that Recovery RL outperforms the next best prior method across all domains. Results suggest that Recovery RL trades off constraint violations and task successes 2-20 times more efficiently in simulation domains and 3 times more efficiently in physical experiments. See https://tinyurl.com/rl-recovery for videos and supplementary material.</description><subject>Algorithms</subject><subject>Constraints</subject><subject>Domains</subject><subject>Image manipulation</subject><subject>Learning</subject><subject>Navigation</subject><subject>Obstacle avoidance</subject><subject>Optimization</subject><subject>Recovery</subject><subject>Recovery zones</subject><subject>Reinforcement learning</subject><subject>Safety</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLw0AQRhdRsNTeBS8Bz4m7M7vZxFupVoWAEBXBy7JJJppik7qbCv33pqQUT_MNvG8GHmOXgkdC8PQmy-cRcBARcs1BwQmbAGodoo7j03_5nM28X3HOhQKNqZqwu5zK7pfcLsiz2-DF1hTk1LR150paU9sHGVnXNu1n8N70X-NGVXBsfXQt-Qt2VttvT7PDnLK35f3r4jHMnh-eFvMsLCEVfSislnGBShQSC0SUVEllqa4wqVQhldJVURWoSXKUZaxKmSCQVmBlLGUCOGXX492N63625Huz6rauHV4aUEJzRC3FQPGRKl3nvaPabFyztm5nBDd7XWbQZfa6zEHXULkaKw0RHfEUU4CU4x9nnWOu</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Thananjeyan, Brijen</creator><creator>Balakrishna, Ashwin</creator><creator>Nair, Suraj</creator><creator>Luo, Michael</creator><creator>Srinivasan, Krishnan</creator><creator>Hwang, Minho</creator><creator>Gonzalez, Joseph E.</creator><creator>Ibarz, Julian</creator><creator>Finn, Chelsea</creator><creator>Goldberg, Ken</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3999-2436</orcidid><orcidid>https://orcid.org/0000-0001-6747-9499</orcidid><orcidid>https://orcid.org/0000-0002-9190-7876</orcidid><orcidid>https://orcid.org/0000-0003-1841-5071</orcidid><orcidid>https://orcid.org/0000-0002-0692-1332</orcidid><orcidid>https://orcid.org/0000-0002-3508-7850</orcidid><orcidid>https://orcid.org/0000-0001-6298-0874</orcidid></search><sort><creationdate>20210701</creationdate><title>Recovery RL: Safe Reinforcement Learning With Learned Recovery Zones</title><author>Thananjeyan, Brijen ; Balakrishna, Ashwin ; Nair, Suraj ; Luo, Michael ; Srinivasan, Krishnan ; Hwang, Minho ; Gonzalez, Joseph E. ; Ibarz, Julian ; Finn, Chelsea ; Goldberg, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-1a746b351b43b3334ed45aefd38d5b4557dbdb37e4034c65c4832e752a4644823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Constraints</topic><topic>Domains</topic><topic>Image manipulation</topic><topic>Learning</topic><topic>Navigation</topic><topic>Obstacle avoidance</topic><topic>Optimization</topic><topic>Recovery</topic><topic>Recovery zones</topic><topic>Reinforcement learning</topic><topic>Safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thananjeyan, Brijen</creatorcontrib><creatorcontrib>Balakrishna, Ashwin</creatorcontrib><creatorcontrib>Nair, Suraj</creatorcontrib><creatorcontrib>Luo, Michael</creatorcontrib><creatorcontrib>Srinivasan, Krishnan</creatorcontrib><creatorcontrib>Hwang, Minho</creatorcontrib><creatorcontrib>Gonzalez, Joseph E.</creatorcontrib><creatorcontrib>Ibarz, Julian</creatorcontrib><creatorcontrib>Finn, Chelsea</creatorcontrib><creatorcontrib>Goldberg, Ken</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thananjeyan, Brijen</au><au>Balakrishna, Ashwin</au><au>Nair, Suraj</au><au>Luo, Michael</au><au>Srinivasan, Krishnan</au><au>Hwang, Minho</au><au>Gonzalez, Joseph E.</au><au>Ibarz, Julian</au><au>Finn, Chelsea</au><au>Goldberg, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovery RL: Safe Reinforcement Learning With Learned Recovery Zones</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>6</volume><issue>3</issue><spage>4915</spage><epage>4922</epage><pages>4915-4922</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Safety remains a central obstacle preventing widespread use of RL in the real world: learning new tasks in uncertain environments requires extensive exploration, but safety requires limiting exploration. We propose Recovery RL, an algorithm which navigates this tradeoff by (1) leveraging offline data to learn about constraint violating zones before policy learning and (2) separating the goals of improving task performance and constraint satisfaction across two policies: a task policy that only optimizes the task reward and a recovery policy that guides the agent to safety when constraint violation is likely. We evaluate Recovery RL on 6 simulation domains, including two contact-rich manipulation tasks and an image-based navigation task, and an image-based obstacle avoidance task on a physical robot. We compare Recovery RL to 5 prior safe RL methods which jointly optimize for task performance and safety via constrained optimization or reward shaping and find that Recovery RL outperforms the next best prior method across all domains. Results suggest that Recovery RL trades off constraint violations and task successes 2-20 times more efficiently in simulation domains and 3 times more efficiently in physical experiments. See https://tinyurl.com/rl-recovery for videos and supplementary material.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3070252</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3999-2436</orcidid><orcidid>https://orcid.org/0000-0001-6747-9499</orcidid><orcidid>https://orcid.org/0000-0002-9190-7876</orcidid><orcidid>https://orcid.org/0000-0003-1841-5071</orcidid><orcidid>https://orcid.org/0000-0002-0692-1332</orcidid><orcidid>https://orcid.org/0000-0002-3508-7850</orcidid><orcidid>https://orcid.org/0000-0001-6298-0874</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2021-07, Vol.6 (3), p.4915-4922 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LRA_2021_3070252 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Constraints Domains Image manipulation Learning Navigation Obstacle avoidance Optimization Recovery Recovery zones Reinforcement learning Safety |
title | Recovery RL: Safe Reinforcement Learning With Learned Recovery Zones |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovery%20RL:%20Safe%20Reinforcement%20Learning%20With%20Learned%20Recovery%20Zones&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Thananjeyan,%20Brijen&rft.date=2021-07-01&rft.volume=6&rft.issue=3&rft.spage=4915&rft.epage=4922&rft.pages=4915-4922&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3070252&rft_dat=%3Cproquest_RIE%3E2517033741%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2517033741&rft_id=info:pmid/&rft_ieee_id=9392290&rfr_iscdi=true |