LoLa-SLAM: Low-Latency LiDAR SLAM Using Continuous Scan Slicing

Real-time 6D pose estimation is a key component for autonomous indoor navigation of Unmanned Aerial Vehicles (UAVs). This letter presents a low-latency LiDAR SLAM framework based on LiDAR scan slicing and concurrent matching, called LoLa-SLAM. Our framework uses sliced point cloud data from a rotati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2021-04, Vol.6 (2), p.2248-2255
Hauptverfasser: Karimi, Mojtaba, Oelsch, Martin, Stengel, Oliver, Babaians, Edwin, Steinbach, Eckehard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2255
container_issue 2
container_start_page 2248
container_title IEEE robotics and automation letters
container_volume 6
creator Karimi, Mojtaba
Oelsch, Martin
Stengel, Oliver
Babaians, Edwin
Steinbach, Eckehard
description Real-time 6D pose estimation is a key component for autonomous indoor navigation of Unmanned Aerial Vehicles (UAVs). This letter presents a low-latency LiDAR SLAM framework based on LiDAR scan slicing and concurrent matching, called LoLa-SLAM. Our framework uses sliced point cloud data from a rotating LiDAR in a concurrent multi-threaded matching pipeline for 6D pose estimation with high update rate and low latency. The LiDAR is actuated using a 2D Lissajous spinning pattern to overcome the sensor's limited FoV. We propose a two-dimensional roughness model to extract the feature points for fine matching and registration of the point cloud. In addition, the pose estimator engages a temporal motion predictor that assists in finding the feature correspondences in the map for the fast convergence of the non-linear optimizer. Subsequently, an Extended Kalman Filter (EKF) is adopted for final pose fusion. The framework is evaluated in multiple experiments by comparing the accuracy, latency, and the update rate of the pose estimation for the trajectories flown in an indoor environment. We quantify the superior quality of the generated volumetric map in comparison to the state-of-the-art frameworks. We further examine the localization precision using ground truth pose information recorded by a total station unit.
doi_str_mv 10.1109/LRA.2021.3060721
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2021_3060721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9359468</ieee_id><sourcerecordid>2501946157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2002462a6dc604f5a7fea1b82d963ae85f3fa89886adb3dc2dedd583611dc2253</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWLR3wUvA89ZJ0nx5kaV-QkRo7Tmkm6xsqZu62UX635vSIp5m5vHeG_ghdEVgQgjoWzMvJxQomTAQICk5QSPKpCyYFOL0336OximtAYBwKpnmI3RvonHFwpRvd9jEn8K4PrTVDpvmoZzjvY6XqWk_8Sy2fdMOcUh4UbkWLzZNlfVLdFa7TQrj47xAy6fHj9lLYd6fX2elKSqqSV9QADoV1AlfCZjW3Mk6OLJS1GvBXFC8ZrVTWinh_Ir5ivrgPVdMEJIPytkFujn0brv4PYTU23Ucuja_tJQD0VNBuMwuOLiqLqbUhdpuu-bLdTtLwO5J2UzK7knZI6kcuT5EmhDCn10znisV-wXJj2Ei</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501946157</pqid></control><display><type>article</type><title>LoLa-SLAM: Low-Latency LiDAR SLAM Using Continuous Scan Slicing</title><source>IEEE Electronic Library (IEL)</source><creator>Karimi, Mojtaba ; Oelsch, Martin ; Stengel, Oliver ; Babaians, Edwin ; Steinbach, Eckehard</creator><creatorcontrib>Karimi, Mojtaba ; Oelsch, Martin ; Stengel, Oliver ; Babaians, Edwin ; Steinbach, Eckehard</creatorcontrib><description>Real-time 6D pose estimation is a key component for autonomous indoor navigation of Unmanned Aerial Vehicles (UAVs). This letter presents a low-latency LiDAR SLAM framework based on LiDAR scan slicing and concurrent matching, called LoLa-SLAM. Our framework uses sliced point cloud data from a rotating LiDAR in a concurrent multi-threaded matching pipeline for 6D pose estimation with high update rate and low latency. The LiDAR is actuated using a 2D Lissajous spinning pattern to overcome the sensor's limited FoV. We propose a two-dimensional roughness model to extract the feature points for fine matching and registration of the point cloud. In addition, the pose estimator engages a temporal motion predictor that assists in finding the feature correspondences in the map for the fast convergence of the non-linear optimizer. Subsequently, an Extended Kalman Filter (EKF) is adopted for final pose fusion. The framework is evaluated in multiple experiments by comparing the accuracy, latency, and the update rate of the pose estimation for the trajectories flown in an indoor environment. We quantify the superior quality of the generated volumetric map in comparison to the state-of-the-art frameworks. We further examine the localization precision using ground truth pose information recorded by a total station unit.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3060721</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>aerial systems ; Autonomous navigation ; Extended Kalman filter ; Feature extraction ; Ground stations ; Ground truth ; Indoor environments ; Laser radar ; Lidar ; Location awareness ; low-latency localization ; Matching ; Measurement by laser beam ; perception and autonomy ; Pose estimation ; Real-time systems ; Simultaneous localization and mapping ; SLAM ; Slicing ; Three dimensional models ; Three-dimensional displays ; Trajectory analysis ; Two dimensional models ; Unmanned aerial vehicles</subject><ispartof>IEEE robotics and automation letters, 2021-04, Vol.6 (2), p.2248-2255</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2002462a6dc604f5a7fea1b82d963ae85f3fa89886adb3dc2dedd583611dc2253</citedby><cites>FETCH-LOGICAL-c291t-2002462a6dc604f5a7fea1b82d963ae85f3fa89886adb3dc2dedd583611dc2253</cites><orcidid>0000-0002-1516-9744 ; 0000-0001-8853-2703 ; 0000-0003-4993-3461 ; 0000-0003-1358-4431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9359468$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9359468$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karimi, Mojtaba</creatorcontrib><creatorcontrib>Oelsch, Martin</creatorcontrib><creatorcontrib>Stengel, Oliver</creatorcontrib><creatorcontrib>Babaians, Edwin</creatorcontrib><creatorcontrib>Steinbach, Eckehard</creatorcontrib><title>LoLa-SLAM: Low-Latency LiDAR SLAM Using Continuous Scan Slicing</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Real-time 6D pose estimation is a key component for autonomous indoor navigation of Unmanned Aerial Vehicles (UAVs). This letter presents a low-latency LiDAR SLAM framework based on LiDAR scan slicing and concurrent matching, called LoLa-SLAM. Our framework uses sliced point cloud data from a rotating LiDAR in a concurrent multi-threaded matching pipeline for 6D pose estimation with high update rate and low latency. The LiDAR is actuated using a 2D Lissajous spinning pattern to overcome the sensor's limited FoV. We propose a two-dimensional roughness model to extract the feature points for fine matching and registration of the point cloud. In addition, the pose estimator engages a temporal motion predictor that assists in finding the feature correspondences in the map for the fast convergence of the non-linear optimizer. Subsequently, an Extended Kalman Filter (EKF) is adopted for final pose fusion. The framework is evaluated in multiple experiments by comparing the accuracy, latency, and the update rate of the pose estimation for the trajectories flown in an indoor environment. We quantify the superior quality of the generated volumetric map in comparison to the state-of-the-art frameworks. We further examine the localization precision using ground truth pose information recorded by a total station unit.</description><subject>aerial systems</subject><subject>Autonomous navigation</subject><subject>Extended Kalman filter</subject><subject>Feature extraction</subject><subject>Ground stations</subject><subject>Ground truth</subject><subject>Indoor environments</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>Location awareness</subject><subject>low-latency localization</subject><subject>Matching</subject><subject>Measurement by laser beam</subject><subject>perception and autonomy</subject><subject>Pose estimation</subject><subject>Real-time systems</subject><subject>Simultaneous localization and mapping</subject><subject>SLAM</subject><subject>Slicing</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Trajectory analysis</subject><subject>Two dimensional models</subject><subject>Unmanned aerial vehicles</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWLR3wUvA89ZJ0nx5kaV-QkRo7Tmkm6xsqZu62UX635vSIp5m5vHeG_ghdEVgQgjoWzMvJxQomTAQICk5QSPKpCyYFOL0336OximtAYBwKpnmI3RvonHFwpRvd9jEn8K4PrTVDpvmoZzjvY6XqWk_8Sy2fdMOcUh4UbkWLzZNlfVLdFa7TQrj47xAy6fHj9lLYd6fX2elKSqqSV9QADoV1AlfCZjW3Mk6OLJS1GvBXFC8ZrVTWinh_Ir5ivrgPVdMEJIPytkFujn0brv4PYTU23Ucuja_tJQD0VNBuMwuOLiqLqbUhdpuu-bLdTtLwO5J2UzK7knZI6kcuT5EmhDCn10znisV-wXJj2Ei</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Karimi, Mojtaba</creator><creator>Oelsch, Martin</creator><creator>Stengel, Oliver</creator><creator>Babaians, Edwin</creator><creator>Steinbach, Eckehard</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1516-9744</orcidid><orcidid>https://orcid.org/0000-0001-8853-2703</orcidid><orcidid>https://orcid.org/0000-0003-4993-3461</orcidid><orcidid>https://orcid.org/0000-0003-1358-4431</orcidid></search><sort><creationdate>20210401</creationdate><title>LoLa-SLAM: Low-Latency LiDAR SLAM Using Continuous Scan Slicing</title><author>Karimi, Mojtaba ; Oelsch, Martin ; Stengel, Oliver ; Babaians, Edwin ; Steinbach, Eckehard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2002462a6dc604f5a7fea1b82d963ae85f3fa89886adb3dc2dedd583611dc2253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>aerial systems</topic><topic>Autonomous navigation</topic><topic>Extended Kalman filter</topic><topic>Feature extraction</topic><topic>Ground stations</topic><topic>Ground truth</topic><topic>Indoor environments</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>Location awareness</topic><topic>low-latency localization</topic><topic>Matching</topic><topic>Measurement by laser beam</topic><topic>perception and autonomy</topic><topic>Pose estimation</topic><topic>Real-time systems</topic><topic>Simultaneous localization and mapping</topic><topic>SLAM</topic><topic>Slicing</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Trajectory analysis</topic><topic>Two dimensional models</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karimi, Mojtaba</creatorcontrib><creatorcontrib>Oelsch, Martin</creatorcontrib><creatorcontrib>Stengel, Oliver</creatorcontrib><creatorcontrib>Babaians, Edwin</creatorcontrib><creatorcontrib>Steinbach, Eckehard</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karimi, Mojtaba</au><au>Oelsch, Martin</au><au>Stengel, Oliver</au><au>Babaians, Edwin</au><au>Steinbach, Eckehard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LoLa-SLAM: Low-Latency LiDAR SLAM Using Continuous Scan Slicing</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>6</volume><issue>2</issue><spage>2248</spage><epage>2255</epage><pages>2248-2255</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Real-time 6D pose estimation is a key component for autonomous indoor navigation of Unmanned Aerial Vehicles (UAVs). This letter presents a low-latency LiDAR SLAM framework based on LiDAR scan slicing and concurrent matching, called LoLa-SLAM. Our framework uses sliced point cloud data from a rotating LiDAR in a concurrent multi-threaded matching pipeline for 6D pose estimation with high update rate and low latency. The LiDAR is actuated using a 2D Lissajous spinning pattern to overcome the sensor's limited FoV. We propose a two-dimensional roughness model to extract the feature points for fine matching and registration of the point cloud. In addition, the pose estimator engages a temporal motion predictor that assists in finding the feature correspondences in the map for the fast convergence of the non-linear optimizer. Subsequently, an Extended Kalman Filter (EKF) is adopted for final pose fusion. The framework is evaluated in multiple experiments by comparing the accuracy, latency, and the update rate of the pose estimation for the trajectories flown in an indoor environment. We quantify the superior quality of the generated volumetric map in comparison to the state-of-the-art frameworks. We further examine the localization precision using ground truth pose information recorded by a total station unit.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3060721</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1516-9744</orcidid><orcidid>https://orcid.org/0000-0001-8853-2703</orcidid><orcidid>https://orcid.org/0000-0003-4993-3461</orcidid><orcidid>https://orcid.org/0000-0003-1358-4431</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2021-04, Vol.6 (2), p.2248-2255
issn 2377-3766
2377-3766
language eng
recordid cdi_crossref_primary_10_1109_LRA_2021_3060721
source IEEE Electronic Library (IEL)
subjects aerial systems
Autonomous navigation
Extended Kalman filter
Feature extraction
Ground stations
Ground truth
Indoor environments
Laser radar
Lidar
Location awareness
low-latency localization
Matching
Measurement by laser beam
perception and autonomy
Pose estimation
Real-time systems
Simultaneous localization and mapping
SLAM
Slicing
Three dimensional models
Three-dimensional displays
Trajectory analysis
Two dimensional models
Unmanned aerial vehicles
title LoLa-SLAM: Low-Latency LiDAR SLAM Using Continuous Scan Slicing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LoLa-SLAM:%20Low-Latency%20LiDAR%20SLAM%20Using%20Continuous%20Scan%20Slicing&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Karimi,%20Mojtaba&rft.date=2021-04-01&rft.volume=6&rft.issue=2&rft.spage=2248&rft.epage=2255&rft.pages=2248-2255&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3060721&rft_dat=%3Cproquest_RIE%3E2501946157%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501946157&rft_id=info:pmid/&rft_ieee_id=9359468&rfr_iscdi=true