Identification and Control of a Nonlinear Soft Actuator and Sensor System

Soft robots are becoming increasingly prevalent, with unique applications to medical devices and wearable technology. Understanding the dynamics of nonlinear soft actuators is crucial to creating controllable soft robots. This paper presents a system identification process and closed-loop control of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2020-07, Vol.5 (3), p.1-1
Hauptverfasser: Johnson, Brian K., Sundaram, Vani, Naris, Mantas, Acome, Eric, Ly, Khoi Dang, Correll, Nikolaus, Keplinger, Christoph, Humbert, J. Sean, Rentschler, Mark E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 3
container_start_page 1
container_title IEEE robotics and automation letters
container_volume 5
creator Johnson, Brian K.
Sundaram, Vani
Naris, Mantas
Acome, Eric
Ly, Khoi Dang
Correll, Nikolaus
Keplinger, Christoph
Humbert, J. Sean
Rentschler, Mark E.
description Soft robots are becoming increasingly prevalent, with unique applications to medical devices and wearable technology. Understanding the dynamics of nonlinear soft actuators is crucial to creating controllable soft robots. This paper presents a system identification process and closed-loop control of foldable HASEL (hydraulically amplified self-healing electrostatic) soft actuators. We characterized foldable HASELs with linear frequency response tests and modeled them using a linear superposition of static and dynamic terms. We also identified two responses of the system: an activation and relaxation response. Based on these two responses, we developed a dual-mode controller which was validated through closed-loop control using a capacitive elastomeric strain sensor wrapped around the actuator. Using this integrated sensor, we achieved step response rise times as fast as 0.025 s and settling times as fast as 0.17 s while under load. These system identification and control techniques can be applied to any HASEL-driven soft robot and could be applied to other soft actuators to enable controllable soft robots.
doi_str_mv 10.1109/LRA.2020.2982056
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2020_2982056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9042285</ieee_id><sourcerecordid>2391258272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6aaed95b2d1f8061d6f45d1ff911eb8e181f950167673f04db55f1113ef9e4083</originalsourceid><addsrcrecordid>eNpNkM9LAzEQhYMoWGrvgpcFz1tnkk12cyzFH4WiYPUc0t0JbGmTmqSH_veutoineYfvvYGPsVuEKSLoh-X7bMqBw5TrhoNUF2zERV2Xolbq8l--ZpOUNgCAktdCyxFbLDryuXd9a3MffGF9V8yDzzFsi-AKW7wGv-092VisgsvFrM0Hm0P8BVfk0xBXx5Rpd8OunN0mmpzvmH0-PX7MX8rl2_NiPluWLdeYS2UtdVqueYeuAYWdcpUcstOItG4IG3RaAqpa1cJB1a2ldIgoyGmqoBFjdn_a3cfwdaCUzSYcoh9eGi40ctnwmg8UnKg2hpQiObOP_c7Go0EwP87M4Mz8ODNnZ0Pl7lTpiegP11Bx3kjxDWvAZlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391258272</pqid></control><display><type>article</type><title>Identification and Control of a Nonlinear Soft Actuator and Sensor System</title><source>IEEE Electronic Library (IEL)</source><creator>Johnson, Brian K. ; Sundaram, Vani ; Naris, Mantas ; Acome, Eric ; Ly, Khoi Dang ; Correll, Nikolaus ; Keplinger, Christoph ; Humbert, J. Sean ; Rentschler, Mark E.</creator><creatorcontrib>Johnson, Brian K. ; Sundaram, Vani ; Naris, Mantas ; Acome, Eric ; Ly, Khoi Dang ; Correll, Nikolaus ; Keplinger, Christoph ; Humbert, J. Sean ; Rentschler, Mark E.</creatorcontrib><description>Soft robots are becoming increasingly prevalent, with unique applications to medical devices and wearable technology. Understanding the dynamics of nonlinear soft actuators is crucial to creating controllable soft robots. This paper presents a system identification process and closed-loop control of foldable HASEL (hydraulically amplified self-healing electrostatic) soft actuators. We characterized foldable HASELs with linear frequency response tests and modeled them using a linear superposition of static and dynamic terms. We also identified two responses of the system: an activation and relaxation response. Based on these two responses, we developed a dual-mode controller which was validated through closed-loop control using a capacitive elastomeric strain sensor wrapped around the actuator. Using this integrated sensor, we achieved step response rise times as fast as 0.025 s and settling times as fast as 0.17 s while under load. These system identification and control techniques can be applied to any HASEL-driven soft robot and could be applied to other soft actuators to enable controllable soft robots.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2020.2982056</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuators ; Capacitive sensors ; control and learning for soft robots ; Control systems ; Dielectric liquids ; Dielectrics ; Elastomers ; Electrodes ; Frequency response ; modeling ; Nonlinear control ; Nonlinear dynamical systems ; Nonlinear dynamics ; Robot sensing systems ; Robots ; sensor-based control ; Sensors ; Soft robotics ; Soft sensors and actuators ; Stability ; Step response ; System identification ; Wearable technology</subject><ispartof>IEEE robotics and automation letters, 2020-07, Vol.5 (3), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6aaed95b2d1f8061d6f45d1ff911eb8e181f950167673f04db55f1113ef9e4083</citedby><cites>FETCH-LOGICAL-c291t-6aaed95b2d1f8061d6f45d1ff911eb8e181f950167673f04db55f1113ef9e4083</cites><orcidid>0000-0001-5795-2705 ; 0000-0001-9151-4100 ; 0000-0002-5901-8358 ; 0000-0002-1911-9277 ; 0000-0002-0973-0937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9042285$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9042285$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Johnson, Brian K.</creatorcontrib><creatorcontrib>Sundaram, Vani</creatorcontrib><creatorcontrib>Naris, Mantas</creatorcontrib><creatorcontrib>Acome, Eric</creatorcontrib><creatorcontrib>Ly, Khoi Dang</creatorcontrib><creatorcontrib>Correll, Nikolaus</creatorcontrib><creatorcontrib>Keplinger, Christoph</creatorcontrib><creatorcontrib>Humbert, J. Sean</creatorcontrib><creatorcontrib>Rentschler, Mark E.</creatorcontrib><title>Identification and Control of a Nonlinear Soft Actuator and Sensor System</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Soft robots are becoming increasingly prevalent, with unique applications to medical devices and wearable technology. Understanding the dynamics of nonlinear soft actuators is crucial to creating controllable soft robots. This paper presents a system identification process and closed-loop control of foldable HASEL (hydraulically amplified self-healing electrostatic) soft actuators. We characterized foldable HASELs with linear frequency response tests and modeled them using a linear superposition of static and dynamic terms. We also identified two responses of the system: an activation and relaxation response. Based on these two responses, we developed a dual-mode controller which was validated through closed-loop control using a capacitive elastomeric strain sensor wrapped around the actuator. Using this integrated sensor, we achieved step response rise times as fast as 0.025 s and settling times as fast as 0.17 s while under load. These system identification and control techniques can be applied to any HASEL-driven soft robot and could be applied to other soft actuators to enable controllable soft robots.</description><subject>Actuators</subject><subject>Capacitive sensors</subject><subject>control and learning for soft robots</subject><subject>Control systems</subject><subject>Dielectric liquids</subject><subject>Dielectrics</subject><subject>Elastomers</subject><subject>Electrodes</subject><subject>Frequency response</subject><subject>modeling</subject><subject>Nonlinear control</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear dynamics</subject><subject>Robot sensing systems</subject><subject>Robots</subject><subject>sensor-based control</subject><subject>Sensors</subject><subject>Soft robotics</subject><subject>Soft sensors and actuators</subject><subject>Stability</subject><subject>Step response</subject><subject>System identification</subject><subject>Wearable technology</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LAzEQhYMoWGrvgpcFz1tnkk12cyzFH4WiYPUc0t0JbGmTmqSH_veutoineYfvvYGPsVuEKSLoh-X7bMqBw5TrhoNUF2zERV2Xolbq8l--ZpOUNgCAktdCyxFbLDryuXd9a3MffGF9V8yDzzFsi-AKW7wGv-092VisgsvFrM0Hm0P8BVfk0xBXx5Rpd8OunN0mmpzvmH0-PX7MX8rl2_NiPluWLdeYS2UtdVqueYeuAYWdcpUcstOItG4IG3RaAqpa1cJB1a2ldIgoyGmqoBFjdn_a3cfwdaCUzSYcoh9eGi40ctnwmg8UnKg2hpQiObOP_c7Go0EwP87M4Mz8ODNnZ0Pl7lTpiegP11Bx3kjxDWvAZlA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Johnson, Brian K.</creator><creator>Sundaram, Vani</creator><creator>Naris, Mantas</creator><creator>Acome, Eric</creator><creator>Ly, Khoi Dang</creator><creator>Correll, Nikolaus</creator><creator>Keplinger, Christoph</creator><creator>Humbert, J. Sean</creator><creator>Rentschler, Mark E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5795-2705</orcidid><orcidid>https://orcid.org/0000-0001-9151-4100</orcidid><orcidid>https://orcid.org/0000-0002-5901-8358</orcidid><orcidid>https://orcid.org/0000-0002-1911-9277</orcidid><orcidid>https://orcid.org/0000-0002-0973-0937</orcidid></search><sort><creationdate>20200701</creationdate><title>Identification and Control of a Nonlinear Soft Actuator and Sensor System</title><author>Johnson, Brian K. ; Sundaram, Vani ; Naris, Mantas ; Acome, Eric ; Ly, Khoi Dang ; Correll, Nikolaus ; Keplinger, Christoph ; Humbert, J. Sean ; Rentschler, Mark E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6aaed95b2d1f8061d6f45d1ff911eb8e181f950167673f04db55f1113ef9e4083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuators</topic><topic>Capacitive sensors</topic><topic>control and learning for soft robots</topic><topic>Control systems</topic><topic>Dielectric liquids</topic><topic>Dielectrics</topic><topic>Elastomers</topic><topic>Electrodes</topic><topic>Frequency response</topic><topic>modeling</topic><topic>Nonlinear control</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear dynamics</topic><topic>Robot sensing systems</topic><topic>Robots</topic><topic>sensor-based control</topic><topic>Sensors</topic><topic>Soft robotics</topic><topic>Soft sensors and actuators</topic><topic>Stability</topic><topic>Step response</topic><topic>System identification</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Brian K.</creatorcontrib><creatorcontrib>Sundaram, Vani</creatorcontrib><creatorcontrib>Naris, Mantas</creatorcontrib><creatorcontrib>Acome, Eric</creatorcontrib><creatorcontrib>Ly, Khoi Dang</creatorcontrib><creatorcontrib>Correll, Nikolaus</creatorcontrib><creatorcontrib>Keplinger, Christoph</creatorcontrib><creatorcontrib>Humbert, J. Sean</creatorcontrib><creatorcontrib>Rentschler, Mark E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Johnson, Brian K.</au><au>Sundaram, Vani</au><au>Naris, Mantas</au><au>Acome, Eric</au><au>Ly, Khoi Dang</au><au>Correll, Nikolaus</au><au>Keplinger, Christoph</au><au>Humbert, J. Sean</au><au>Rentschler, Mark E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and Control of a Nonlinear Soft Actuator and Sensor System</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>5</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Soft robots are becoming increasingly prevalent, with unique applications to medical devices and wearable technology. Understanding the dynamics of nonlinear soft actuators is crucial to creating controllable soft robots. This paper presents a system identification process and closed-loop control of foldable HASEL (hydraulically amplified self-healing electrostatic) soft actuators. We characterized foldable HASELs with linear frequency response tests and modeled them using a linear superposition of static and dynamic terms. We also identified two responses of the system: an activation and relaxation response. Based on these two responses, we developed a dual-mode controller which was validated through closed-loop control using a capacitive elastomeric strain sensor wrapped around the actuator. Using this integrated sensor, we achieved step response rise times as fast as 0.025 s and settling times as fast as 0.17 s while under load. These system identification and control techniques can be applied to any HASEL-driven soft robot and could be applied to other soft actuators to enable controllable soft robots.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2020.2982056</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5795-2705</orcidid><orcidid>https://orcid.org/0000-0001-9151-4100</orcidid><orcidid>https://orcid.org/0000-0002-5901-8358</orcidid><orcidid>https://orcid.org/0000-0002-1911-9277</orcidid><orcidid>https://orcid.org/0000-0002-0973-0937</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2020-07, Vol.5 (3), p.1-1
issn 2377-3766
2377-3766
language eng
recordid cdi_crossref_primary_10_1109_LRA_2020_2982056
source IEEE Electronic Library (IEL)
subjects Actuators
Capacitive sensors
control and learning for soft robots
Control systems
Dielectric liquids
Dielectrics
Elastomers
Electrodes
Frequency response
modeling
Nonlinear control
Nonlinear dynamical systems
Nonlinear dynamics
Robot sensing systems
Robots
sensor-based control
Sensors
Soft robotics
Soft sensors and actuators
Stability
Step response
System identification
Wearable technology
title Identification and Control of a Nonlinear Soft Actuator and Sensor System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A52%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20Control%20of%20a%20Nonlinear%20Soft%20Actuator%20and%20Sensor%20System&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Johnson,%20Brian%20K.&rft.date=2020-07-01&rft.volume=5&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2020.2982056&rft_dat=%3Cproquest_RIE%3E2391258272%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391258272&rft_id=info:pmid/&rft_ieee_id=9042285&rfr_iscdi=true