Identification and Control of a Nonlinear Soft Actuator and Sensor System
Soft robots are becoming increasingly prevalent, with unique applications to medical devices and wearable technology. Understanding the dynamics of nonlinear soft actuators is crucial to creating controllable soft robots. This paper presents a system identification process and closed-loop control of...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2020-07, Vol.5 (3), p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE robotics and automation letters |
container_volume | 5 |
creator | Johnson, Brian K. Sundaram, Vani Naris, Mantas Acome, Eric Ly, Khoi Dang Correll, Nikolaus Keplinger, Christoph Humbert, J. Sean Rentschler, Mark E. |
description | Soft robots are becoming increasingly prevalent, with unique applications to medical devices and wearable technology. Understanding the dynamics of nonlinear soft actuators is crucial to creating controllable soft robots. This paper presents a system identification process and closed-loop control of foldable HASEL (hydraulically amplified self-healing electrostatic) soft actuators. We characterized foldable HASELs with linear frequency response tests and modeled them using a linear superposition of static and dynamic terms. We also identified two responses of the system: an activation and relaxation response. Based on these two responses, we developed a dual-mode controller which was validated through closed-loop control using a capacitive elastomeric strain sensor wrapped around the actuator. Using this integrated sensor, we achieved step response rise times as fast as 0.025 s and settling times as fast as 0.17 s while under load. These system identification and control techniques can be applied to any HASEL-driven soft robot and could be applied to other soft actuators to enable controllable soft robots. |
doi_str_mv | 10.1109/LRA.2020.2982056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2020_2982056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9042285</ieee_id><sourcerecordid>2391258272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6aaed95b2d1f8061d6f45d1ff911eb8e181f950167673f04db55f1113ef9e4083</originalsourceid><addsrcrecordid>eNpNkM9LAzEQhYMoWGrvgpcFz1tnkk12cyzFH4WiYPUc0t0JbGmTmqSH_veutoineYfvvYGPsVuEKSLoh-X7bMqBw5TrhoNUF2zERV2Xolbq8l--ZpOUNgCAktdCyxFbLDryuXd9a3MffGF9V8yDzzFsi-AKW7wGv-092VisgsvFrM0Hm0P8BVfk0xBXx5Rpd8OunN0mmpzvmH0-PX7MX8rl2_NiPluWLdeYS2UtdVqueYeuAYWdcpUcstOItG4IG3RaAqpa1cJB1a2ldIgoyGmqoBFjdn_a3cfwdaCUzSYcoh9eGi40ctnwmg8UnKg2hpQiObOP_c7Go0EwP87M4Mz8ODNnZ0Pl7lTpiegP11Bx3kjxDWvAZlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391258272</pqid></control><display><type>article</type><title>Identification and Control of a Nonlinear Soft Actuator and Sensor System</title><source>IEEE Electronic Library (IEL)</source><creator>Johnson, Brian K. ; Sundaram, Vani ; Naris, Mantas ; Acome, Eric ; Ly, Khoi Dang ; Correll, Nikolaus ; Keplinger, Christoph ; Humbert, J. Sean ; Rentschler, Mark E.</creator><creatorcontrib>Johnson, Brian K. ; Sundaram, Vani ; Naris, Mantas ; Acome, Eric ; Ly, Khoi Dang ; Correll, Nikolaus ; Keplinger, Christoph ; Humbert, J. Sean ; Rentschler, Mark E.</creatorcontrib><description>Soft robots are becoming increasingly prevalent, with unique applications to medical devices and wearable technology. Understanding the dynamics of nonlinear soft actuators is crucial to creating controllable soft robots. This paper presents a system identification process and closed-loop control of foldable HASEL (hydraulically amplified self-healing electrostatic) soft actuators. We characterized foldable HASELs with linear frequency response tests and modeled them using a linear superposition of static and dynamic terms. We also identified two responses of the system: an activation and relaxation response. Based on these two responses, we developed a dual-mode controller which was validated through closed-loop control using a capacitive elastomeric strain sensor wrapped around the actuator. Using this integrated sensor, we achieved step response rise times as fast as 0.025 s and settling times as fast as 0.17 s while under load. These system identification and control techniques can be applied to any HASEL-driven soft robot and could be applied to other soft actuators to enable controllable soft robots.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2020.2982056</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuators ; Capacitive sensors ; control and learning for soft robots ; Control systems ; Dielectric liquids ; Dielectrics ; Elastomers ; Electrodes ; Frequency response ; modeling ; Nonlinear control ; Nonlinear dynamical systems ; Nonlinear dynamics ; Robot sensing systems ; Robots ; sensor-based control ; Sensors ; Soft robotics ; Soft sensors and actuators ; Stability ; Step response ; System identification ; Wearable technology</subject><ispartof>IEEE robotics and automation letters, 2020-07, Vol.5 (3), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6aaed95b2d1f8061d6f45d1ff911eb8e181f950167673f04db55f1113ef9e4083</citedby><cites>FETCH-LOGICAL-c291t-6aaed95b2d1f8061d6f45d1ff911eb8e181f950167673f04db55f1113ef9e4083</cites><orcidid>0000-0001-5795-2705 ; 0000-0001-9151-4100 ; 0000-0002-5901-8358 ; 0000-0002-1911-9277 ; 0000-0002-0973-0937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9042285$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9042285$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Johnson, Brian K.</creatorcontrib><creatorcontrib>Sundaram, Vani</creatorcontrib><creatorcontrib>Naris, Mantas</creatorcontrib><creatorcontrib>Acome, Eric</creatorcontrib><creatorcontrib>Ly, Khoi Dang</creatorcontrib><creatorcontrib>Correll, Nikolaus</creatorcontrib><creatorcontrib>Keplinger, Christoph</creatorcontrib><creatorcontrib>Humbert, J. Sean</creatorcontrib><creatorcontrib>Rentschler, Mark E.</creatorcontrib><title>Identification and Control of a Nonlinear Soft Actuator and Sensor System</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Soft robots are becoming increasingly prevalent, with unique applications to medical devices and wearable technology. Understanding the dynamics of nonlinear soft actuators is crucial to creating controllable soft robots. This paper presents a system identification process and closed-loop control of foldable HASEL (hydraulically amplified self-healing electrostatic) soft actuators. We characterized foldable HASELs with linear frequency response tests and modeled them using a linear superposition of static and dynamic terms. We also identified two responses of the system: an activation and relaxation response. Based on these two responses, we developed a dual-mode controller which was validated through closed-loop control using a capacitive elastomeric strain sensor wrapped around the actuator. Using this integrated sensor, we achieved step response rise times as fast as 0.025 s and settling times as fast as 0.17 s while under load. These system identification and control techniques can be applied to any HASEL-driven soft robot and could be applied to other soft actuators to enable controllable soft robots.</description><subject>Actuators</subject><subject>Capacitive sensors</subject><subject>control and learning for soft robots</subject><subject>Control systems</subject><subject>Dielectric liquids</subject><subject>Dielectrics</subject><subject>Elastomers</subject><subject>Electrodes</subject><subject>Frequency response</subject><subject>modeling</subject><subject>Nonlinear control</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear dynamics</subject><subject>Robot sensing systems</subject><subject>Robots</subject><subject>sensor-based control</subject><subject>Sensors</subject><subject>Soft robotics</subject><subject>Soft sensors and actuators</subject><subject>Stability</subject><subject>Step response</subject><subject>System identification</subject><subject>Wearable technology</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LAzEQhYMoWGrvgpcFz1tnkk12cyzFH4WiYPUc0t0JbGmTmqSH_veutoineYfvvYGPsVuEKSLoh-X7bMqBw5TrhoNUF2zERV2Xolbq8l--ZpOUNgCAktdCyxFbLDryuXd9a3MffGF9V8yDzzFsi-AKW7wGv-092VisgsvFrM0Hm0P8BVfk0xBXx5Rpd8OunN0mmpzvmH0-PX7MX8rl2_NiPluWLdeYS2UtdVqueYeuAYWdcpUcstOItG4IG3RaAqpa1cJB1a2ldIgoyGmqoBFjdn_a3cfwdaCUzSYcoh9eGi40ctnwmg8UnKg2hpQiObOP_c7Go0EwP87M4Mz8ODNnZ0Pl7lTpiegP11Bx3kjxDWvAZlA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Johnson, Brian K.</creator><creator>Sundaram, Vani</creator><creator>Naris, Mantas</creator><creator>Acome, Eric</creator><creator>Ly, Khoi Dang</creator><creator>Correll, Nikolaus</creator><creator>Keplinger, Christoph</creator><creator>Humbert, J. Sean</creator><creator>Rentschler, Mark E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5795-2705</orcidid><orcidid>https://orcid.org/0000-0001-9151-4100</orcidid><orcidid>https://orcid.org/0000-0002-5901-8358</orcidid><orcidid>https://orcid.org/0000-0002-1911-9277</orcidid><orcidid>https://orcid.org/0000-0002-0973-0937</orcidid></search><sort><creationdate>20200701</creationdate><title>Identification and Control of a Nonlinear Soft Actuator and Sensor System</title><author>Johnson, Brian K. ; Sundaram, Vani ; Naris, Mantas ; Acome, Eric ; Ly, Khoi Dang ; Correll, Nikolaus ; Keplinger, Christoph ; Humbert, J. Sean ; Rentschler, Mark E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6aaed95b2d1f8061d6f45d1ff911eb8e181f950167673f04db55f1113ef9e4083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuators</topic><topic>Capacitive sensors</topic><topic>control and learning for soft robots</topic><topic>Control systems</topic><topic>Dielectric liquids</topic><topic>Dielectrics</topic><topic>Elastomers</topic><topic>Electrodes</topic><topic>Frequency response</topic><topic>modeling</topic><topic>Nonlinear control</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear dynamics</topic><topic>Robot sensing systems</topic><topic>Robots</topic><topic>sensor-based control</topic><topic>Sensors</topic><topic>Soft robotics</topic><topic>Soft sensors and actuators</topic><topic>Stability</topic><topic>Step response</topic><topic>System identification</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Brian K.</creatorcontrib><creatorcontrib>Sundaram, Vani</creatorcontrib><creatorcontrib>Naris, Mantas</creatorcontrib><creatorcontrib>Acome, Eric</creatorcontrib><creatorcontrib>Ly, Khoi Dang</creatorcontrib><creatorcontrib>Correll, Nikolaus</creatorcontrib><creatorcontrib>Keplinger, Christoph</creatorcontrib><creatorcontrib>Humbert, J. Sean</creatorcontrib><creatorcontrib>Rentschler, Mark E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Johnson, Brian K.</au><au>Sundaram, Vani</au><au>Naris, Mantas</au><au>Acome, Eric</au><au>Ly, Khoi Dang</au><au>Correll, Nikolaus</au><au>Keplinger, Christoph</au><au>Humbert, J. Sean</au><au>Rentschler, Mark E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and Control of a Nonlinear Soft Actuator and Sensor System</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>5</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Soft robots are becoming increasingly prevalent, with unique applications to medical devices and wearable technology. Understanding the dynamics of nonlinear soft actuators is crucial to creating controllable soft robots. This paper presents a system identification process and closed-loop control of foldable HASEL (hydraulically amplified self-healing electrostatic) soft actuators. We characterized foldable HASELs with linear frequency response tests and modeled them using a linear superposition of static and dynamic terms. We also identified two responses of the system: an activation and relaxation response. Based on these two responses, we developed a dual-mode controller which was validated through closed-loop control using a capacitive elastomeric strain sensor wrapped around the actuator. Using this integrated sensor, we achieved step response rise times as fast as 0.025 s and settling times as fast as 0.17 s while under load. These system identification and control techniques can be applied to any HASEL-driven soft robot and could be applied to other soft actuators to enable controllable soft robots.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2020.2982056</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5795-2705</orcidid><orcidid>https://orcid.org/0000-0001-9151-4100</orcidid><orcidid>https://orcid.org/0000-0002-5901-8358</orcidid><orcidid>https://orcid.org/0000-0002-1911-9277</orcidid><orcidid>https://orcid.org/0000-0002-0973-0937</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2020-07, Vol.5 (3), p.1-1 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LRA_2020_2982056 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Capacitive sensors control and learning for soft robots Control systems Dielectric liquids Dielectrics Elastomers Electrodes Frequency response modeling Nonlinear control Nonlinear dynamical systems Nonlinear dynamics Robot sensing systems Robots sensor-based control Sensors Soft robotics Soft sensors and actuators Stability Step response System identification Wearable technology |
title | Identification and Control of a Nonlinear Soft Actuator and Sensor System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A52%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20Control%20of%20a%20Nonlinear%20Soft%20Actuator%20and%20Sensor%20System&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Johnson,%20Brian%20K.&rft.date=2020-07-01&rft.volume=5&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2020.2982056&rft_dat=%3Cproquest_RIE%3E2391258272%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391258272&rft_id=info:pmid/&rft_ieee_id=9042285&rfr_iscdi=true |