Estimation With Fast Feature Selection in Robot Visual Navigation

We consider the robot localization problem with sparse visual feature selection. The underlying key property is that contributions of trackable features (landmarks) appear linearly in the information matrix of the corresponding estimation problem. We utilize standard models for motion and vision sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2020-04, Vol.5 (2), p.3572-3579
Hauptverfasser: Mousavi, Hossein K., Motee, Nader
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3579
container_issue 2
container_start_page 3572
container_title IEEE robotics and automation letters
container_volume 5
creator Mousavi, Hossein K.
Motee, Nader
description We consider the robot localization problem with sparse visual feature selection. The underlying key property is that contributions of trackable features (landmarks) appear linearly in the information matrix of the corresponding estimation problem. We utilize standard models for motion and vision system using a camera to formulate the feature selection problem over moving finite-time horizons. We propose a scalable randomized sampling algorithm to select more informative features to obtain a certain estimation quality. We provide probabilistic performance guarantees for our method. The time-complexity of our feature selection algorithm is linear in the number of candidate features, which is practically plausible and outperforms existing greedy methods that scale quadratically with the number of candidate features. Our numerical simulations confirm that not only the execution time of our proposed method is comparably less than that of the greedy method, but also the resulting estimation quality is very close to the greedy method.
doi_str_mv 10.1109/LRA.2020.2974654
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2020_2974654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9001183</ieee_id><sourcerecordid>2386053841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-376f48c26e7687fa2f8a00137444055a097c67b1013ecc75a3fed352520a452a3</originalsourceid><addsrcrecordid>eNpNUE1LQzEQDKJg0d4FLwHPrZvv946ltCoUhfp1DGncpym1ryZ5gv_e9APxtMvuzM7sEHLBYMgY1Nez-WjIgcOQ10ZqJY9IjwtjBsJoffyvPyX9lJYAwBQ3olY9MpqkHD5dDu2avob8QacuZTpFl7uI9BFX6He7sKbzdtFm-hJS51b03n2H9x3tnJw0bpWwf6hn5Hk6eRrfDmYPN3fj0Wzgec3yVr6Rlecaja5M43hTueJDGCklKOWgNl6bBSsj9N4oJxp8E4orDk4q7sQZudrf3cT2q8OU7bLt4rpIWi4qDUpUkhUU7FE-tilFbOwmlv_ij2Vgt1nZkpXdZmUPWRXK5Z4SEPEPXhdzrBLiFy4wYqI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386053841</pqid></control><display><type>article</type><title>Estimation With Fast Feature Selection in Robot Visual Navigation</title><source>IEEE Electronic Library (IEL)</source><creator>Mousavi, Hossein K. ; Motee, Nader</creator><creatorcontrib>Mousavi, Hossein K. ; Motee, Nader</creatorcontrib><description>We consider the robot localization problem with sparse visual feature selection. The underlying key property is that contributions of trackable features (landmarks) appear linearly in the information matrix of the corresponding estimation problem. We utilize standard models for motion and vision system using a camera to formulate the feature selection problem over moving finite-time horizons. We propose a scalable randomized sampling algorithm to select more informative features to obtain a certain estimation quality. We provide probabilistic performance guarantees for our method. The time-complexity of our feature selection algorithm is linear in the number of candidate features, which is practically plausible and outperforms existing greedy methods that scale quadratically with the number of candidate features. Our numerical simulations confirm that not only the execution time of our proposed method is comparably less than that of the greedy method, but also the resulting estimation quality is very close to the greedy method.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2020.2974654</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous agents ; Computer simulation ; Covariance matrices ; Feature extraction ; localization ; Mathematical models ; Navigation ; Robot localization ; Robots ; Vision systems ; visual-based navigation</subject><ispartof>IEEE robotics and automation letters, 2020-04, Vol.5 (2), p.3572-3579</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-376f48c26e7687fa2f8a00137444055a097c67b1013ecc75a3fed352520a452a3</citedby><cites>FETCH-LOGICAL-c291t-376f48c26e7687fa2f8a00137444055a097c67b1013ecc75a3fed352520a452a3</cites><orcidid>0000-0002-0597-3659 ; 0000-0002-9828-2215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9001183$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9001183$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mousavi, Hossein K.</creatorcontrib><creatorcontrib>Motee, Nader</creatorcontrib><title>Estimation With Fast Feature Selection in Robot Visual Navigation</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>We consider the robot localization problem with sparse visual feature selection. The underlying key property is that contributions of trackable features (landmarks) appear linearly in the information matrix of the corresponding estimation problem. We utilize standard models for motion and vision system using a camera to formulate the feature selection problem over moving finite-time horizons. We propose a scalable randomized sampling algorithm to select more informative features to obtain a certain estimation quality. We provide probabilistic performance guarantees for our method. The time-complexity of our feature selection algorithm is linear in the number of candidate features, which is practically plausible and outperforms existing greedy methods that scale quadratically with the number of candidate features. Our numerical simulations confirm that not only the execution time of our proposed method is comparably less than that of the greedy method, but also the resulting estimation quality is very close to the greedy method.</description><subject>Algorithms</subject><subject>Autonomous agents</subject><subject>Computer simulation</subject><subject>Covariance matrices</subject><subject>Feature extraction</subject><subject>localization</subject><subject>Mathematical models</subject><subject>Navigation</subject><subject>Robot localization</subject><subject>Robots</subject><subject>Vision systems</subject><subject>visual-based navigation</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUE1LQzEQDKJg0d4FLwHPrZvv946ltCoUhfp1DGncpym1ryZ5gv_e9APxtMvuzM7sEHLBYMgY1Nez-WjIgcOQ10ZqJY9IjwtjBsJoffyvPyX9lJYAwBQ3olY9MpqkHD5dDu2avob8QacuZTpFl7uI9BFX6He7sKbzdtFm-hJS51b03n2H9x3tnJw0bpWwf6hn5Hk6eRrfDmYPN3fj0Wzgec3yVr6Rlecaja5M43hTueJDGCklKOWgNl6bBSsj9N4oJxp8E4orDk4q7sQZudrf3cT2q8OU7bLt4rpIWi4qDUpUkhUU7FE-tilFbOwmlv_ij2Vgt1nZkpXdZmUPWRXK5Z4SEPEPXhdzrBLiFy4wYqI</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Mousavi, Hossein K.</creator><creator>Motee, Nader</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0597-3659</orcidid><orcidid>https://orcid.org/0000-0002-9828-2215</orcidid></search><sort><creationdate>20200401</creationdate><title>Estimation With Fast Feature Selection in Robot Visual Navigation</title><author>Mousavi, Hossein K. ; Motee, Nader</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-376f48c26e7687fa2f8a00137444055a097c67b1013ecc75a3fed352520a452a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Autonomous agents</topic><topic>Computer simulation</topic><topic>Covariance matrices</topic><topic>Feature extraction</topic><topic>localization</topic><topic>Mathematical models</topic><topic>Navigation</topic><topic>Robot localization</topic><topic>Robots</topic><topic>Vision systems</topic><topic>visual-based navigation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mousavi, Hossein K.</creatorcontrib><creatorcontrib>Motee, Nader</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mousavi, Hossein K.</au><au>Motee, Nader</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation With Fast Feature Selection in Robot Visual Navigation</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>5</volume><issue>2</issue><spage>3572</spage><epage>3579</epage><pages>3572-3579</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>We consider the robot localization problem with sparse visual feature selection. The underlying key property is that contributions of trackable features (landmarks) appear linearly in the information matrix of the corresponding estimation problem. We utilize standard models for motion and vision system using a camera to formulate the feature selection problem over moving finite-time horizons. We propose a scalable randomized sampling algorithm to select more informative features to obtain a certain estimation quality. We provide probabilistic performance guarantees for our method. The time-complexity of our feature selection algorithm is linear in the number of candidate features, which is practically plausible and outperforms existing greedy methods that scale quadratically with the number of candidate features. Our numerical simulations confirm that not only the execution time of our proposed method is comparably less than that of the greedy method, but also the resulting estimation quality is very close to the greedy method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2020.2974654</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0597-3659</orcidid><orcidid>https://orcid.org/0000-0002-9828-2215</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2020-04, Vol.5 (2), p.3572-3579
issn 2377-3766
2377-3766
language eng
recordid cdi_crossref_primary_10_1109_LRA_2020_2974654
source IEEE Electronic Library (IEL)
subjects Algorithms
Autonomous agents
Computer simulation
Covariance matrices
Feature extraction
localization
Mathematical models
Navigation
Robot localization
Robots
Vision systems
visual-based navigation
title Estimation With Fast Feature Selection in Robot Visual Navigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A33%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20With%20Fast%20Feature%20Selection%20in%20Robot%20Visual%20Navigation&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Mousavi,%20Hossein%20K.&rft.date=2020-04-01&rft.volume=5&rft.issue=2&rft.spage=3572&rft.epage=3579&rft.pages=3572-3579&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2020.2974654&rft_dat=%3Cproquest_RIE%3E2386053841%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386053841&rft_id=info:pmid/&rft_ieee_id=9001183&rfr_iscdi=true