T-PFC: A Trajectory-Optimized Perturbation Feedback Control Approach
Traditional stochastic optimal control methods that attempt to obtain an optimal feedback policy for nonlinear systems are computationally intractable. In this letter, we derive a decoupling principle between the open-loop plan, and the closed-loop feedback gains, which leads to a deterministic pert...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2019-10, Vol.4 (4), p.3457-3464 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3464 |
---|---|
container_issue | 4 |
container_start_page | 3457 |
container_title | IEEE robotics and automation letters |
container_volume | 4 |
creator | Parunandi, Karthikeya Sharma Chakravorty, Suman |
description | Traditional stochastic optimal control methods that attempt to obtain an optimal feedback policy for nonlinear systems are computationally intractable. In this letter, we derive a decoupling principle between the open-loop plan, and the closed-loop feedback gains, which leads to a deterministic perturbation feedback control based solution to fully observable stochastic optimal control problems, that is near-optimal. Extensive numerical simulations validate the theory, revealing a wide range of applicability, coping with medium levels of noise. The performance is compared against a set of baselines in several difficult robotic planning and control examples that show near identical performance to nonlinear model predictive control while requiring much lesser computational effort. |
doi_str_mv | 10.1109/LRA.2019.2926948 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2019_2926948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8755450</ieee_id><sourcerecordid>2296105244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-d7859bd8d38ca179c8a3846ea7a0f670dfcbf62ae1887c2322d31d736804a6923</originalsourceid><addsrcrecordid>eNpNkM9LwzAYhoMoOObugpeC584vSfPLW6lOhcGGzHNIkxQ7t6Wm2WH-9XZsiKfvO7zv-8CD0C2GKcagHubv5ZQAVlOiCFeFvEAjQoXIqeD88t9_jSZ9vwYAzIigio3Q0ypfzqrHrMxW0ay9TSEe8kWX2m3741229DHtY21SG3bZzHtXG_uVVWGXYthkZdfFYOznDbpqzKb3k_Mdo4_Z86p6zeeLl7eqnOeWFEXKnZBM1U46Kq3BQllpqCy4N8JAwwW4xtYNJ8ZjKYUllBBHsROUSygMV4SO0f1pd8B-732f9Drs425AakIUx8AGzpCCU8rG0PfRN7qL7dbEg8agj7r0oEsfdemzrqFyd6q03vu_uBSMFQzoL6IOZDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296105244</pqid></control><display><type>article</type><title>T-PFC: A Trajectory-Optimized Perturbation Feedback Control Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Parunandi, Karthikeya Sharma ; Chakravorty, Suman</creator><creatorcontrib>Parunandi, Karthikeya Sharma ; Chakravorty, Suman</creatorcontrib><description>Traditional stochastic optimal control methods that attempt to obtain an optimal feedback policy for nonlinear systems are computationally intractable. In this letter, we derive a decoupling principle between the open-loop plan, and the closed-loop feedback gains, which leads to a deterministic perturbation feedback control based solution to fully observable stochastic optimal control problems, that is near-optimal. Extensive numerical simulations validate the theory, revealing a wide range of applicability, coping with medium levels of noise. The performance is compared against a set of baselines in several difficult robotic planning and control examples that show near identical performance to nonlinear model predictive control while requiring much lesser computational effort.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2019.2926948</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computer simulation ; Control methods ; Control systems ; Decoupling ; Feedback control ; Mathematical models ; Motion and path planning ; motion control ; nonholonomic motion planning ; Nonlinear control ; Nonlinear systems ; Optimal control ; optimization and optimal control ; Perturbation ; Perturbation methods ; Planning ; Predictive control ; Robot control ; Robots ; Stochastic processes ; Trajectory ; Trajectory control ; Trajectory optimization</subject><ispartof>IEEE robotics and automation letters, 2019-10, Vol.4 (4), p.3457-3464</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-d7859bd8d38ca179c8a3846ea7a0f670dfcbf62ae1887c2322d31d736804a6923</cites><orcidid>0000-0003-2733-3385 ; 0000-0003-3074-3406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8755450$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8755450$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Parunandi, Karthikeya Sharma</creatorcontrib><creatorcontrib>Chakravorty, Suman</creatorcontrib><title>T-PFC: A Trajectory-Optimized Perturbation Feedback Control Approach</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Traditional stochastic optimal control methods that attempt to obtain an optimal feedback policy for nonlinear systems are computationally intractable. In this letter, we derive a decoupling principle between the open-loop plan, and the closed-loop feedback gains, which leads to a deterministic perturbation feedback control based solution to fully observable stochastic optimal control problems, that is near-optimal. Extensive numerical simulations validate the theory, revealing a wide range of applicability, coping with medium levels of noise. The performance is compared against a set of baselines in several difficult robotic planning and control examples that show near identical performance to nonlinear model predictive control while requiring much lesser computational effort.</description><subject>Computer simulation</subject><subject>Control methods</subject><subject>Control systems</subject><subject>Decoupling</subject><subject>Feedback control</subject><subject>Mathematical models</subject><subject>Motion and path planning</subject><subject>motion control</subject><subject>nonholonomic motion planning</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>optimization and optimal control</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Planning</subject><subject>Predictive control</subject><subject>Robot control</subject><subject>Robots</subject><subject>Stochastic processes</subject><subject>Trajectory</subject><subject>Trajectory control</subject><subject>Trajectory optimization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAYhoMoOObugpeC584vSfPLW6lOhcGGzHNIkxQ7t6Wm2WH-9XZsiKfvO7zv-8CD0C2GKcagHubv5ZQAVlOiCFeFvEAjQoXIqeD88t9_jSZ9vwYAzIigio3Q0ypfzqrHrMxW0ay9TSEe8kWX2m3741229DHtY21SG3bZzHtXG_uVVWGXYthkZdfFYOznDbpqzKb3k_Mdo4_Z86p6zeeLl7eqnOeWFEXKnZBM1U46Kq3BQllpqCy4N8JAwwW4xtYNJ8ZjKYUllBBHsROUSygMV4SO0f1pd8B-732f9Drs425AakIUx8AGzpCCU8rG0PfRN7qL7dbEg8agj7r0oEsfdemzrqFyd6q03vu_uBSMFQzoL6IOZDY</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Parunandi, Karthikeya Sharma</creator><creator>Chakravorty, Suman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2733-3385</orcidid><orcidid>https://orcid.org/0000-0003-3074-3406</orcidid></search><sort><creationdate>20191001</creationdate><title>T-PFC: A Trajectory-Optimized Perturbation Feedback Control Approach</title><author>Parunandi, Karthikeya Sharma ; Chakravorty, Suman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-d7859bd8d38ca179c8a3846ea7a0f670dfcbf62ae1887c2322d31d736804a6923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Control methods</topic><topic>Control systems</topic><topic>Decoupling</topic><topic>Feedback control</topic><topic>Mathematical models</topic><topic>Motion and path planning</topic><topic>motion control</topic><topic>nonholonomic motion planning</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>optimization and optimal control</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Planning</topic><topic>Predictive control</topic><topic>Robot control</topic><topic>Robots</topic><topic>Stochastic processes</topic><topic>Trajectory</topic><topic>Trajectory control</topic><topic>Trajectory optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parunandi, Karthikeya Sharma</creatorcontrib><creatorcontrib>Chakravorty, Suman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Parunandi, Karthikeya Sharma</au><au>Chakravorty, Suman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>T-PFC: A Trajectory-Optimized Perturbation Feedback Control Approach</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>4</volume><issue>4</issue><spage>3457</spage><epage>3464</epage><pages>3457-3464</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Traditional stochastic optimal control methods that attempt to obtain an optimal feedback policy for nonlinear systems are computationally intractable. In this letter, we derive a decoupling principle between the open-loop plan, and the closed-loop feedback gains, which leads to a deterministic perturbation feedback control based solution to fully observable stochastic optimal control problems, that is near-optimal. Extensive numerical simulations validate the theory, revealing a wide range of applicability, coping with medium levels of noise. The performance is compared against a set of baselines in several difficult robotic planning and control examples that show near identical performance to nonlinear model predictive control while requiring much lesser computational effort.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2019.2926948</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2733-3385</orcidid><orcidid>https://orcid.org/0000-0003-3074-3406</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2019-10, Vol.4 (4), p.3457-3464 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LRA_2019_2926948 |
source | IEEE Electronic Library (IEL) |
subjects | Computer simulation Control methods Control systems Decoupling Feedback control Mathematical models Motion and path planning motion control nonholonomic motion planning Nonlinear control Nonlinear systems Optimal control optimization and optimal control Perturbation Perturbation methods Planning Predictive control Robot control Robots Stochastic processes Trajectory Trajectory control Trajectory optimization |
title | T-PFC: A Trajectory-Optimized Perturbation Feedback Control Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T17%3A03%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=T-PFC:%20A%20Trajectory-Optimized%20Perturbation%20Feedback%20Control%20Approach&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Parunandi,%20Karthikeya%20Sharma&rft.date=2019-10-01&rft.volume=4&rft.issue=4&rft.spage=3457&rft.epage=3464&rft.pages=3457-3464&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2019.2926948&rft_dat=%3Cproquest_RIE%3E2296105244%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2296105244&rft_id=info:pmid/&rft_ieee_id=8755450&rfr_iscdi=true |