T-PFC: A Trajectory-Optimized Perturbation Feedback Control Approach

Traditional stochastic optimal control methods that attempt to obtain an optimal feedback policy for nonlinear systems are computationally intractable. In this letter, we derive a decoupling principle between the open-loop plan, and the closed-loop feedback gains, which leads to a deterministic pert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2019-10, Vol.4 (4), p.3457-3464
Hauptverfasser: Parunandi, Karthikeya Sharma, Chakravorty, Suman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3464
container_issue 4
container_start_page 3457
container_title IEEE robotics and automation letters
container_volume 4
creator Parunandi, Karthikeya Sharma
Chakravorty, Suman
description Traditional stochastic optimal control methods that attempt to obtain an optimal feedback policy for nonlinear systems are computationally intractable. In this letter, we derive a decoupling principle between the open-loop plan, and the closed-loop feedback gains, which leads to a deterministic perturbation feedback control based solution to fully observable stochastic optimal control problems, that is near-optimal. Extensive numerical simulations validate the theory, revealing a wide range of applicability, coping with medium levels of noise. The performance is compared against a set of baselines in several difficult robotic planning and control examples that show near identical performance to nonlinear model predictive control while requiring much lesser computational effort.
doi_str_mv 10.1109/LRA.2019.2926948
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2019_2926948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8755450</ieee_id><sourcerecordid>2296105244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-d7859bd8d38ca179c8a3846ea7a0f670dfcbf62ae1887c2322d31d736804a6923</originalsourceid><addsrcrecordid>eNpNkM9LwzAYhoMoOObugpeC584vSfPLW6lOhcGGzHNIkxQ7t6Wm2WH-9XZsiKfvO7zv-8CD0C2GKcagHubv5ZQAVlOiCFeFvEAjQoXIqeD88t9_jSZ9vwYAzIigio3Q0ypfzqrHrMxW0ay9TSEe8kWX2m3741229DHtY21SG3bZzHtXG_uVVWGXYthkZdfFYOznDbpqzKb3k_Mdo4_Z86p6zeeLl7eqnOeWFEXKnZBM1U46Kq3BQllpqCy4N8JAwwW4xtYNJ8ZjKYUllBBHsROUSygMV4SO0f1pd8B-732f9Drs425AakIUx8AGzpCCU8rG0PfRN7qL7dbEg8agj7r0oEsfdemzrqFyd6q03vu_uBSMFQzoL6IOZDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296105244</pqid></control><display><type>article</type><title>T-PFC: A Trajectory-Optimized Perturbation Feedback Control Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Parunandi, Karthikeya Sharma ; Chakravorty, Suman</creator><creatorcontrib>Parunandi, Karthikeya Sharma ; Chakravorty, Suman</creatorcontrib><description>Traditional stochastic optimal control methods that attempt to obtain an optimal feedback policy for nonlinear systems are computationally intractable. In this letter, we derive a decoupling principle between the open-loop plan, and the closed-loop feedback gains, which leads to a deterministic perturbation feedback control based solution to fully observable stochastic optimal control problems, that is near-optimal. Extensive numerical simulations validate the theory, revealing a wide range of applicability, coping with medium levels of noise. The performance is compared against a set of baselines in several difficult robotic planning and control examples that show near identical performance to nonlinear model predictive control while requiring much lesser computational effort.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2019.2926948</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computer simulation ; Control methods ; Control systems ; Decoupling ; Feedback control ; Mathematical models ; Motion and path planning ; motion control ; nonholonomic motion planning ; Nonlinear control ; Nonlinear systems ; Optimal control ; optimization and optimal control ; Perturbation ; Perturbation methods ; Planning ; Predictive control ; Robot control ; Robots ; Stochastic processes ; Trajectory ; Trajectory control ; Trajectory optimization</subject><ispartof>IEEE robotics and automation letters, 2019-10, Vol.4 (4), p.3457-3464</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-d7859bd8d38ca179c8a3846ea7a0f670dfcbf62ae1887c2322d31d736804a6923</cites><orcidid>0000-0003-2733-3385 ; 0000-0003-3074-3406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8755450$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8755450$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Parunandi, Karthikeya Sharma</creatorcontrib><creatorcontrib>Chakravorty, Suman</creatorcontrib><title>T-PFC: A Trajectory-Optimized Perturbation Feedback Control Approach</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Traditional stochastic optimal control methods that attempt to obtain an optimal feedback policy for nonlinear systems are computationally intractable. In this letter, we derive a decoupling principle between the open-loop plan, and the closed-loop feedback gains, which leads to a deterministic perturbation feedback control based solution to fully observable stochastic optimal control problems, that is near-optimal. Extensive numerical simulations validate the theory, revealing a wide range of applicability, coping with medium levels of noise. The performance is compared against a set of baselines in several difficult robotic planning and control examples that show near identical performance to nonlinear model predictive control while requiring much lesser computational effort.</description><subject>Computer simulation</subject><subject>Control methods</subject><subject>Control systems</subject><subject>Decoupling</subject><subject>Feedback control</subject><subject>Mathematical models</subject><subject>Motion and path planning</subject><subject>motion control</subject><subject>nonholonomic motion planning</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>optimization and optimal control</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Planning</subject><subject>Predictive control</subject><subject>Robot control</subject><subject>Robots</subject><subject>Stochastic processes</subject><subject>Trajectory</subject><subject>Trajectory control</subject><subject>Trajectory optimization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAYhoMoOObugpeC584vSfPLW6lOhcGGzHNIkxQ7t6Wm2WH-9XZsiKfvO7zv-8CD0C2GKcagHubv5ZQAVlOiCFeFvEAjQoXIqeD88t9_jSZ9vwYAzIigio3Q0ypfzqrHrMxW0ay9TSEe8kWX2m3741229DHtY21SG3bZzHtXG_uVVWGXYthkZdfFYOznDbpqzKb3k_Mdo4_Z86p6zeeLl7eqnOeWFEXKnZBM1U46Kq3BQllpqCy4N8JAwwW4xtYNJ8ZjKYUllBBHsROUSygMV4SO0f1pd8B-732f9Drs425AakIUx8AGzpCCU8rG0PfRN7qL7dbEg8agj7r0oEsfdemzrqFyd6q03vu_uBSMFQzoL6IOZDY</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Parunandi, Karthikeya Sharma</creator><creator>Chakravorty, Suman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2733-3385</orcidid><orcidid>https://orcid.org/0000-0003-3074-3406</orcidid></search><sort><creationdate>20191001</creationdate><title>T-PFC: A Trajectory-Optimized Perturbation Feedback Control Approach</title><author>Parunandi, Karthikeya Sharma ; Chakravorty, Suman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-d7859bd8d38ca179c8a3846ea7a0f670dfcbf62ae1887c2322d31d736804a6923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Control methods</topic><topic>Control systems</topic><topic>Decoupling</topic><topic>Feedback control</topic><topic>Mathematical models</topic><topic>Motion and path planning</topic><topic>motion control</topic><topic>nonholonomic motion planning</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>optimization and optimal control</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Planning</topic><topic>Predictive control</topic><topic>Robot control</topic><topic>Robots</topic><topic>Stochastic processes</topic><topic>Trajectory</topic><topic>Trajectory control</topic><topic>Trajectory optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parunandi, Karthikeya Sharma</creatorcontrib><creatorcontrib>Chakravorty, Suman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Parunandi, Karthikeya Sharma</au><au>Chakravorty, Suman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>T-PFC: A Trajectory-Optimized Perturbation Feedback Control Approach</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>4</volume><issue>4</issue><spage>3457</spage><epage>3464</epage><pages>3457-3464</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Traditional stochastic optimal control methods that attempt to obtain an optimal feedback policy for nonlinear systems are computationally intractable. In this letter, we derive a decoupling principle between the open-loop plan, and the closed-loop feedback gains, which leads to a deterministic perturbation feedback control based solution to fully observable stochastic optimal control problems, that is near-optimal. Extensive numerical simulations validate the theory, revealing a wide range of applicability, coping with medium levels of noise. The performance is compared against a set of baselines in several difficult robotic planning and control examples that show near identical performance to nonlinear model predictive control while requiring much lesser computational effort.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2019.2926948</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2733-3385</orcidid><orcidid>https://orcid.org/0000-0003-3074-3406</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2019-10, Vol.4 (4), p.3457-3464
issn 2377-3766
2377-3766
language eng
recordid cdi_crossref_primary_10_1109_LRA_2019_2926948
source IEEE Electronic Library (IEL)
subjects Computer simulation
Control methods
Control systems
Decoupling
Feedback control
Mathematical models
Motion and path planning
motion control
nonholonomic motion planning
Nonlinear control
Nonlinear systems
Optimal control
optimization and optimal control
Perturbation
Perturbation methods
Planning
Predictive control
Robot control
Robots
Stochastic processes
Trajectory
Trajectory control
Trajectory optimization
title T-PFC: A Trajectory-Optimized Perturbation Feedback Control Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T17%3A03%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=T-PFC:%20A%20Trajectory-Optimized%20Perturbation%20Feedback%20Control%20Approach&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Parunandi,%20Karthikeya%20Sharma&rft.date=2019-10-01&rft.volume=4&rft.issue=4&rft.spage=3457&rft.epage=3464&rft.pages=3457-3464&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2019.2926948&rft_dat=%3Cproquest_RIE%3E2296105244%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2296105244&rft_id=info:pmid/&rft_ieee_id=8755450&rfr_iscdi=true