Vision-Based Online Learning Kinematic Control for Soft Robots Using Local Gaussian Process Regression

Soft robots, owing to their elastomeric material, ensure safe interaction with their surroundings. These robot compliance properties inevitably impose a tradeoff against precise motion control, as to which conventional model-based methods were proposed to approximate the robot kinematics. However, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2019-04, Vol.4 (2), p.1194-1201
Hauptverfasser: Fang, Ge, Wang, Xiaomei, Wang, Kui, Lee, Kit-Hang, Ho, Justin D. L., Fu, Hing-Choi, Fu, Denny Kin Chung, Kwok, Ka-Wai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1201
container_issue 2
container_start_page 1194
container_title IEEE robotics and automation letters
container_volume 4
creator Fang, Ge
Wang, Xiaomei
Wang, Kui
Lee, Kit-Hang
Ho, Justin D. L.
Fu, Hing-Choi
Fu, Denny Kin Chung
Kwok, Ka-Wai
description Soft robots, owing to their elastomeric material, ensure safe interaction with their surroundings. These robot compliance properties inevitably impose a tradeoff against precise motion control, as to which conventional model-based methods were proposed to approximate the robot kinematics. However, too many parameters, regarding robot deformation and external disturbance, are difficult to obtain, even if possible, which could be very nonlinear. Sensors self-contained in the robot are required to compensate modeling uncertainties and external disturbances. Camera (eye) integrated at the robot end-effector (hand) is a common setting. To this end, we propose an eye-in-hand visual servo that incorporates with learning-based controller to accomplish more precise robotic tasks. Local Gaussian process regression is used to initialize and refine the inverse mappings online, without prior knowledge of robot and camera parameters. Experimental validation is also conducted to demonstrate the hyperelastic robot can compensate an external variable loading during trajectory tracking.
doi_str_mv 10.1109/LRA.2019.2893691
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2019_2893691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8616838</ieee_id><sourcerecordid>2298385008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-21e2e80f20fcd54791e5e325aac494fb631915e00e5060570032082d193895963</originalsourceid><addsrcrecordid>eNpNkEFLAzEQRoMoWGrvgpeA562TpNlNjrVoFRcq1XoN6XZSUtpNTbYH_70pLeJpZuB938Aj5JbBkDHQD_V8POTA9JArLUrNLkiPi6oqRFWWl__2azJIaQMATPJKaNkj7ssnH9ri0SZc0Vm79S3SGm1sfbumb_na2c43dBLaLoYtdSHSj-A6Og_L0CW6SEeuDo3d0qk9pORtS99jaDAlOsd1zDP335ArZ7cJB-fZJ4vnp8_JS1HPpq-TcV00Qqiu4Aw5KnAcXLOSo0ozlCi4tLYZ6ZFbloJpJhEAJZQgKwDBQfEV00JpqUvRJ_en3n0M3wdMndmEQ2zzS8O5VkJJAJUpOFFNDClFdGYf_c7GH8PAHIWaLNQchZqz0By5O0U8Iv7hqmRlLhW_Mplv5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298385008</pqid></control><display><type>article</type><title>Vision-Based Online Learning Kinematic Control for Soft Robots Using Local Gaussian Process Regression</title><source>IEEE Electronic Library (IEL)</source><creator>Fang, Ge ; Wang, Xiaomei ; Wang, Kui ; Lee, Kit-Hang ; Ho, Justin D. L. ; Fu, Hing-Choi ; Fu, Denny Kin Chung ; Kwok, Ka-Wai</creator><creatorcontrib>Fang, Ge ; Wang, Xiaomei ; Wang, Kui ; Lee, Kit-Hang ; Ho, Justin D. L. ; Fu, Hing-Choi ; Fu, Denny Kin Chung ; Kwok, Ka-Wai</creatorcontrib><description>Soft robots, owing to their elastomeric material, ensure safe interaction with their surroundings. These robot compliance properties inevitably impose a tradeoff against precise motion control, as to which conventional model-based methods were proposed to approximate the robot kinematics. However, too many parameters, regarding robot deformation and external disturbance, are difficult to obtain, even if possible, which could be very nonlinear. Sensors self-contained in the robot are required to compensate modeling uncertainties and external disturbances. Camera (eye) integrated at the robot end-effector (hand) is a common setting. To this end, we propose an eye-in-hand visual servo that incorporates with learning-based controller to accomplish more precise robotic tasks. Local Gaussian process regression is used to initialize and refine the inverse mappings online, without prior knowledge of robot and camera parameters. Experimental validation is also conducted to demonstrate the hyperelastic robot can compensate an external variable loading during trajectory tracking.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2019.2893691</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Approximation ; Cameras ; Elastomers ; Eye-in-hand visual-servo ; Gaussian process ; Kinematics ; learning-based control ; local Gaussian process regression ; Mathematical models ; Motion control ; Parameters ; Robot control ; Robot kinematics ; Robot vision systems ; Robots ; soft robot control ; Soft robotics</subject><ispartof>IEEE robotics and automation letters, 2019-04, Vol.4 (2), p.1194-1201</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-21e2e80f20fcd54791e5e325aac494fb631915e00e5060570032082d193895963</citedby><cites>FETCH-LOGICAL-c338t-21e2e80f20fcd54791e5e325aac494fb631915e00e5060570032082d193895963</cites><orcidid>0000-0003-3933-3251 ; 0000-0003-1879-9730 ; 0000-0003-4569-6948 ; 0000-0003-1043-565X ; 0000-0001-6104-7353 ; 0000-0001-6280-1135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8616838$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8616838$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fang, Ge</creatorcontrib><creatorcontrib>Wang, Xiaomei</creatorcontrib><creatorcontrib>Wang, Kui</creatorcontrib><creatorcontrib>Lee, Kit-Hang</creatorcontrib><creatorcontrib>Ho, Justin D. L.</creatorcontrib><creatorcontrib>Fu, Hing-Choi</creatorcontrib><creatorcontrib>Fu, Denny Kin Chung</creatorcontrib><creatorcontrib>Kwok, Ka-Wai</creatorcontrib><title>Vision-Based Online Learning Kinematic Control for Soft Robots Using Local Gaussian Process Regression</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Soft robots, owing to their elastomeric material, ensure safe interaction with their surroundings. These robot compliance properties inevitably impose a tradeoff against precise motion control, as to which conventional model-based methods were proposed to approximate the robot kinematics. However, too many parameters, regarding robot deformation and external disturbance, are difficult to obtain, even if possible, which could be very nonlinear. Sensors self-contained in the robot are required to compensate modeling uncertainties and external disturbances. Camera (eye) integrated at the robot end-effector (hand) is a common setting. To this end, we propose an eye-in-hand visual servo that incorporates with learning-based controller to accomplish more precise robotic tasks. Local Gaussian process regression is used to initialize and refine the inverse mappings online, without prior knowledge of robot and camera parameters. Experimental validation is also conducted to demonstrate the hyperelastic robot can compensate an external variable loading during trajectory tracking.</description><subject>Approximation</subject><subject>Cameras</subject><subject>Elastomers</subject><subject>Eye-in-hand visual-servo</subject><subject>Gaussian process</subject><subject>Kinematics</subject><subject>learning-based control</subject><subject>local Gaussian process regression</subject><subject>Mathematical models</subject><subject>Motion control</subject><subject>Parameters</subject><subject>Robot control</subject><subject>Robot kinematics</subject><subject>Robot vision systems</subject><subject>Robots</subject><subject>soft robot control</subject><subject>Soft robotics</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLAzEQRoMoWGrvgpeA562TpNlNjrVoFRcq1XoN6XZSUtpNTbYH_70pLeJpZuB938Aj5JbBkDHQD_V8POTA9JArLUrNLkiPi6oqRFWWl__2azJIaQMATPJKaNkj7ssnH9ri0SZc0Vm79S3SGm1sfbumb_na2c43dBLaLoYtdSHSj-A6Og_L0CW6SEeuDo3d0qk9pORtS99jaDAlOsd1zDP335ArZ7cJB-fZJ4vnp8_JS1HPpq-TcV00Qqiu4Aw5KnAcXLOSo0ozlCi4tLYZ6ZFbloJpJhEAJZQgKwDBQfEV00JpqUvRJ_en3n0M3wdMndmEQ2zzS8O5VkJJAJUpOFFNDClFdGYf_c7GH8PAHIWaLNQchZqz0By5O0U8Iv7hqmRlLhW_Mplv5A</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Fang, Ge</creator><creator>Wang, Xiaomei</creator><creator>Wang, Kui</creator><creator>Lee, Kit-Hang</creator><creator>Ho, Justin D. L.</creator><creator>Fu, Hing-Choi</creator><creator>Fu, Denny Kin Chung</creator><creator>Kwok, Ka-Wai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3933-3251</orcidid><orcidid>https://orcid.org/0000-0003-1879-9730</orcidid><orcidid>https://orcid.org/0000-0003-4569-6948</orcidid><orcidid>https://orcid.org/0000-0003-1043-565X</orcidid><orcidid>https://orcid.org/0000-0001-6104-7353</orcidid><orcidid>https://orcid.org/0000-0001-6280-1135</orcidid></search><sort><creationdate>20190401</creationdate><title>Vision-Based Online Learning Kinematic Control for Soft Robots Using Local Gaussian Process Regression</title><author>Fang, Ge ; Wang, Xiaomei ; Wang, Kui ; Lee, Kit-Hang ; Ho, Justin D. L. ; Fu, Hing-Choi ; Fu, Denny Kin Chung ; Kwok, Ka-Wai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-21e2e80f20fcd54791e5e325aac494fb631915e00e5060570032082d193895963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Cameras</topic><topic>Elastomers</topic><topic>Eye-in-hand visual-servo</topic><topic>Gaussian process</topic><topic>Kinematics</topic><topic>learning-based control</topic><topic>local Gaussian process regression</topic><topic>Mathematical models</topic><topic>Motion control</topic><topic>Parameters</topic><topic>Robot control</topic><topic>Robot kinematics</topic><topic>Robot vision systems</topic><topic>Robots</topic><topic>soft robot control</topic><topic>Soft robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Ge</creatorcontrib><creatorcontrib>Wang, Xiaomei</creatorcontrib><creatorcontrib>Wang, Kui</creatorcontrib><creatorcontrib>Lee, Kit-Hang</creatorcontrib><creatorcontrib>Ho, Justin D. L.</creatorcontrib><creatorcontrib>Fu, Hing-Choi</creatorcontrib><creatorcontrib>Fu, Denny Kin Chung</creatorcontrib><creatorcontrib>Kwok, Ka-Wai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fang, Ge</au><au>Wang, Xiaomei</au><au>Wang, Kui</au><au>Lee, Kit-Hang</au><au>Ho, Justin D. L.</au><au>Fu, Hing-Choi</au><au>Fu, Denny Kin Chung</au><au>Kwok, Ka-Wai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vision-Based Online Learning Kinematic Control for Soft Robots Using Local Gaussian Process Regression</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>4</volume><issue>2</issue><spage>1194</spage><epage>1201</epage><pages>1194-1201</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Soft robots, owing to their elastomeric material, ensure safe interaction with their surroundings. These robot compliance properties inevitably impose a tradeoff against precise motion control, as to which conventional model-based methods were proposed to approximate the robot kinematics. However, too many parameters, regarding robot deformation and external disturbance, are difficult to obtain, even if possible, which could be very nonlinear. Sensors self-contained in the robot are required to compensate modeling uncertainties and external disturbances. Camera (eye) integrated at the robot end-effector (hand) is a common setting. To this end, we propose an eye-in-hand visual servo that incorporates with learning-based controller to accomplish more precise robotic tasks. Local Gaussian process regression is used to initialize and refine the inverse mappings online, without prior knowledge of robot and camera parameters. Experimental validation is also conducted to demonstrate the hyperelastic robot can compensate an external variable loading during trajectory tracking.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2019.2893691</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3933-3251</orcidid><orcidid>https://orcid.org/0000-0003-1879-9730</orcidid><orcidid>https://orcid.org/0000-0003-4569-6948</orcidid><orcidid>https://orcid.org/0000-0003-1043-565X</orcidid><orcidid>https://orcid.org/0000-0001-6104-7353</orcidid><orcidid>https://orcid.org/0000-0001-6280-1135</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2019-04, Vol.4 (2), p.1194-1201
issn 2377-3766
2377-3766
language eng
recordid cdi_crossref_primary_10_1109_LRA_2019_2893691
source IEEE Electronic Library (IEL)
subjects Approximation
Cameras
Elastomers
Eye-in-hand visual-servo
Gaussian process
Kinematics
learning-based control
local Gaussian process regression
Mathematical models
Motion control
Parameters
Robot control
Robot kinematics
Robot vision systems
Robots
soft robot control
Soft robotics
title Vision-Based Online Learning Kinematic Control for Soft Robots Using Local Gaussian Process Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vision-Based%20Online%20Learning%20Kinematic%20Control%20for%20Soft%20Robots%20Using%20Local%20Gaussian%20Process%20Regression&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Fang,%20Ge&rft.date=2019-04-01&rft.volume=4&rft.issue=2&rft.spage=1194&rft.epage=1201&rft.pages=1194-1201&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2019.2893691&rft_dat=%3Cproquest_RIE%3E2298385008%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298385008&rft_id=info:pmid/&rft_ieee_id=8616838&rfr_iscdi=true