Vision-Based Online Learning Kinematic Control for Soft Robots Using Local Gaussian Process Regression
Soft robots, owing to their elastomeric material, ensure safe interaction with their surroundings. These robot compliance properties inevitably impose a tradeoff against precise motion control, as to which conventional model-based methods were proposed to approximate the robot kinematics. However, t...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2019-04, Vol.4 (2), p.1194-1201 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1201 |
---|---|
container_issue | 2 |
container_start_page | 1194 |
container_title | IEEE robotics and automation letters |
container_volume | 4 |
creator | Fang, Ge Wang, Xiaomei Wang, Kui Lee, Kit-Hang Ho, Justin D. L. Fu, Hing-Choi Fu, Denny Kin Chung Kwok, Ka-Wai |
description | Soft robots, owing to their elastomeric material, ensure safe interaction with their surroundings. These robot compliance properties inevitably impose a tradeoff against precise motion control, as to which conventional model-based methods were proposed to approximate the robot kinematics. However, too many parameters, regarding robot deformation and external disturbance, are difficult to obtain, even if possible, which could be very nonlinear. Sensors self-contained in the robot are required to compensate modeling uncertainties and external disturbances. Camera (eye) integrated at the robot end-effector (hand) is a common setting. To this end, we propose an eye-in-hand visual servo that incorporates with learning-based controller to accomplish more precise robotic tasks. Local Gaussian process regression is used to initialize and refine the inverse mappings online, without prior knowledge of robot and camera parameters. Experimental validation is also conducted to demonstrate the hyperelastic robot can compensate an external variable loading during trajectory tracking. |
doi_str_mv | 10.1109/LRA.2019.2893691 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2019_2893691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8616838</ieee_id><sourcerecordid>2298385008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-21e2e80f20fcd54791e5e325aac494fb631915e00e5060570032082d193895963</originalsourceid><addsrcrecordid>eNpNkEFLAzEQRoMoWGrvgpeA562TpNlNjrVoFRcq1XoN6XZSUtpNTbYH_70pLeJpZuB938Aj5JbBkDHQD_V8POTA9JArLUrNLkiPi6oqRFWWl__2azJIaQMATPJKaNkj7ssnH9ri0SZc0Vm79S3SGm1sfbumb_na2c43dBLaLoYtdSHSj-A6Og_L0CW6SEeuDo3d0qk9pORtS99jaDAlOsd1zDP335ArZ7cJB-fZJ4vnp8_JS1HPpq-TcV00Qqiu4Aw5KnAcXLOSo0ozlCi4tLYZ6ZFbloJpJhEAJZQgKwDBQfEV00JpqUvRJ_en3n0M3wdMndmEQ2zzS8O5VkJJAJUpOFFNDClFdGYf_c7GH8PAHIWaLNQchZqz0By5O0U8Iv7hqmRlLhW_Mplv5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298385008</pqid></control><display><type>article</type><title>Vision-Based Online Learning Kinematic Control for Soft Robots Using Local Gaussian Process Regression</title><source>IEEE Electronic Library (IEL)</source><creator>Fang, Ge ; Wang, Xiaomei ; Wang, Kui ; Lee, Kit-Hang ; Ho, Justin D. L. ; Fu, Hing-Choi ; Fu, Denny Kin Chung ; Kwok, Ka-Wai</creator><creatorcontrib>Fang, Ge ; Wang, Xiaomei ; Wang, Kui ; Lee, Kit-Hang ; Ho, Justin D. L. ; Fu, Hing-Choi ; Fu, Denny Kin Chung ; Kwok, Ka-Wai</creatorcontrib><description>Soft robots, owing to their elastomeric material, ensure safe interaction with their surroundings. These robot compliance properties inevitably impose a tradeoff against precise motion control, as to which conventional model-based methods were proposed to approximate the robot kinematics. However, too many parameters, regarding robot deformation and external disturbance, are difficult to obtain, even if possible, which could be very nonlinear. Sensors self-contained in the robot are required to compensate modeling uncertainties and external disturbances. Camera (eye) integrated at the robot end-effector (hand) is a common setting. To this end, we propose an eye-in-hand visual servo that incorporates with learning-based controller to accomplish more precise robotic tasks. Local Gaussian process regression is used to initialize and refine the inverse mappings online, without prior knowledge of robot and camera parameters. Experimental validation is also conducted to demonstrate the hyperelastic robot can compensate an external variable loading during trajectory tracking.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2019.2893691</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Approximation ; Cameras ; Elastomers ; Eye-in-hand visual-servo ; Gaussian process ; Kinematics ; learning-based control ; local Gaussian process regression ; Mathematical models ; Motion control ; Parameters ; Robot control ; Robot kinematics ; Robot vision systems ; Robots ; soft robot control ; Soft robotics</subject><ispartof>IEEE robotics and automation letters, 2019-04, Vol.4 (2), p.1194-1201</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-21e2e80f20fcd54791e5e325aac494fb631915e00e5060570032082d193895963</citedby><cites>FETCH-LOGICAL-c338t-21e2e80f20fcd54791e5e325aac494fb631915e00e5060570032082d193895963</cites><orcidid>0000-0003-3933-3251 ; 0000-0003-1879-9730 ; 0000-0003-4569-6948 ; 0000-0003-1043-565X ; 0000-0001-6104-7353 ; 0000-0001-6280-1135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8616838$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8616838$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fang, Ge</creatorcontrib><creatorcontrib>Wang, Xiaomei</creatorcontrib><creatorcontrib>Wang, Kui</creatorcontrib><creatorcontrib>Lee, Kit-Hang</creatorcontrib><creatorcontrib>Ho, Justin D. L.</creatorcontrib><creatorcontrib>Fu, Hing-Choi</creatorcontrib><creatorcontrib>Fu, Denny Kin Chung</creatorcontrib><creatorcontrib>Kwok, Ka-Wai</creatorcontrib><title>Vision-Based Online Learning Kinematic Control for Soft Robots Using Local Gaussian Process Regression</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Soft robots, owing to their elastomeric material, ensure safe interaction with their surroundings. These robot compliance properties inevitably impose a tradeoff against precise motion control, as to which conventional model-based methods were proposed to approximate the robot kinematics. However, too many parameters, regarding robot deformation and external disturbance, are difficult to obtain, even if possible, which could be very nonlinear. Sensors self-contained in the robot are required to compensate modeling uncertainties and external disturbances. Camera (eye) integrated at the robot end-effector (hand) is a common setting. To this end, we propose an eye-in-hand visual servo that incorporates with learning-based controller to accomplish more precise robotic tasks. Local Gaussian process regression is used to initialize and refine the inverse mappings online, without prior knowledge of robot and camera parameters. Experimental validation is also conducted to demonstrate the hyperelastic robot can compensate an external variable loading during trajectory tracking.</description><subject>Approximation</subject><subject>Cameras</subject><subject>Elastomers</subject><subject>Eye-in-hand visual-servo</subject><subject>Gaussian process</subject><subject>Kinematics</subject><subject>learning-based control</subject><subject>local Gaussian process regression</subject><subject>Mathematical models</subject><subject>Motion control</subject><subject>Parameters</subject><subject>Robot control</subject><subject>Robot kinematics</subject><subject>Robot vision systems</subject><subject>Robots</subject><subject>soft robot control</subject><subject>Soft robotics</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLAzEQRoMoWGrvgpeA562TpNlNjrVoFRcq1XoN6XZSUtpNTbYH_70pLeJpZuB938Aj5JbBkDHQD_V8POTA9JArLUrNLkiPi6oqRFWWl__2azJIaQMATPJKaNkj7ssnH9ri0SZc0Vm79S3SGm1sfbumb_na2c43dBLaLoYtdSHSj-A6Og_L0CW6SEeuDo3d0qk9pORtS99jaDAlOsd1zDP335ArZ7cJB-fZJ4vnp8_JS1HPpq-TcV00Qqiu4Aw5KnAcXLOSo0ozlCi4tLYZ6ZFbloJpJhEAJZQgKwDBQfEV00JpqUvRJ_en3n0M3wdMndmEQ2zzS8O5VkJJAJUpOFFNDClFdGYf_c7GH8PAHIWaLNQchZqz0By5O0U8Iv7hqmRlLhW_Mplv5A</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Fang, Ge</creator><creator>Wang, Xiaomei</creator><creator>Wang, Kui</creator><creator>Lee, Kit-Hang</creator><creator>Ho, Justin D. L.</creator><creator>Fu, Hing-Choi</creator><creator>Fu, Denny Kin Chung</creator><creator>Kwok, Ka-Wai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3933-3251</orcidid><orcidid>https://orcid.org/0000-0003-1879-9730</orcidid><orcidid>https://orcid.org/0000-0003-4569-6948</orcidid><orcidid>https://orcid.org/0000-0003-1043-565X</orcidid><orcidid>https://orcid.org/0000-0001-6104-7353</orcidid><orcidid>https://orcid.org/0000-0001-6280-1135</orcidid></search><sort><creationdate>20190401</creationdate><title>Vision-Based Online Learning Kinematic Control for Soft Robots Using Local Gaussian Process Regression</title><author>Fang, Ge ; Wang, Xiaomei ; Wang, Kui ; Lee, Kit-Hang ; Ho, Justin D. L. ; Fu, Hing-Choi ; Fu, Denny Kin Chung ; Kwok, Ka-Wai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-21e2e80f20fcd54791e5e325aac494fb631915e00e5060570032082d193895963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Cameras</topic><topic>Elastomers</topic><topic>Eye-in-hand visual-servo</topic><topic>Gaussian process</topic><topic>Kinematics</topic><topic>learning-based control</topic><topic>local Gaussian process regression</topic><topic>Mathematical models</topic><topic>Motion control</topic><topic>Parameters</topic><topic>Robot control</topic><topic>Robot kinematics</topic><topic>Robot vision systems</topic><topic>Robots</topic><topic>soft robot control</topic><topic>Soft robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Ge</creatorcontrib><creatorcontrib>Wang, Xiaomei</creatorcontrib><creatorcontrib>Wang, Kui</creatorcontrib><creatorcontrib>Lee, Kit-Hang</creatorcontrib><creatorcontrib>Ho, Justin D. L.</creatorcontrib><creatorcontrib>Fu, Hing-Choi</creatorcontrib><creatorcontrib>Fu, Denny Kin Chung</creatorcontrib><creatorcontrib>Kwok, Ka-Wai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fang, Ge</au><au>Wang, Xiaomei</au><au>Wang, Kui</au><au>Lee, Kit-Hang</au><au>Ho, Justin D. L.</au><au>Fu, Hing-Choi</au><au>Fu, Denny Kin Chung</au><au>Kwok, Ka-Wai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vision-Based Online Learning Kinematic Control for Soft Robots Using Local Gaussian Process Regression</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>4</volume><issue>2</issue><spage>1194</spage><epage>1201</epage><pages>1194-1201</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Soft robots, owing to their elastomeric material, ensure safe interaction with their surroundings. These robot compliance properties inevitably impose a tradeoff against precise motion control, as to which conventional model-based methods were proposed to approximate the robot kinematics. However, too many parameters, regarding robot deformation and external disturbance, are difficult to obtain, even if possible, which could be very nonlinear. Sensors self-contained in the robot are required to compensate modeling uncertainties and external disturbances. Camera (eye) integrated at the robot end-effector (hand) is a common setting. To this end, we propose an eye-in-hand visual servo that incorporates with learning-based controller to accomplish more precise robotic tasks. Local Gaussian process regression is used to initialize and refine the inverse mappings online, without prior knowledge of robot and camera parameters. Experimental validation is also conducted to demonstrate the hyperelastic robot can compensate an external variable loading during trajectory tracking.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2019.2893691</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3933-3251</orcidid><orcidid>https://orcid.org/0000-0003-1879-9730</orcidid><orcidid>https://orcid.org/0000-0003-4569-6948</orcidid><orcidid>https://orcid.org/0000-0003-1043-565X</orcidid><orcidid>https://orcid.org/0000-0001-6104-7353</orcidid><orcidid>https://orcid.org/0000-0001-6280-1135</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2019-04, Vol.4 (2), p.1194-1201 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LRA_2019_2893691 |
source | IEEE Electronic Library (IEL) |
subjects | Approximation Cameras Elastomers Eye-in-hand visual-servo Gaussian process Kinematics learning-based control local Gaussian process regression Mathematical models Motion control Parameters Robot control Robot kinematics Robot vision systems Robots soft robot control Soft robotics |
title | Vision-Based Online Learning Kinematic Control for Soft Robots Using Local Gaussian Process Regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vision-Based%20Online%20Learning%20Kinematic%20Control%20for%20Soft%20Robots%20Using%20Local%20Gaussian%20Process%20Regression&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Fang,%20Ge&rft.date=2019-04-01&rft.volume=4&rft.issue=2&rft.spage=1194&rft.epage=1201&rft.pages=1194-1201&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2019.2893691&rft_dat=%3Cproquest_RIE%3E2298385008%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298385008&rft_id=info:pmid/&rft_ieee_id=8616838&rfr_iscdi=true |