Collaborative Visual SLAM Using Compressed Feature Exchange

In the field of robotics, collaborative simultaneous localization and mapping (SLAM) is still a challenging problem. The exploration of unknown large-scale environments benefits from sharing the work among multiple agents possibly equipped with different abilities, such as aerial or ground-based veh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2019-01, Vol.4 (1), p.57-64
Hauptverfasser: Van Opdenbosch, Dominik, Steinbach, Eckehard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue 1
container_start_page 57
container_title IEEE robotics and automation letters
container_volume 4
creator Van Opdenbosch, Dominik
Steinbach, Eckehard
description In the field of robotics, collaborative simultaneous localization and mapping (SLAM) is still a challenging problem. The exploration of unknown large-scale environments benefits from sharing the work among multiple agents possibly equipped with different abilities, such as aerial or ground-based vehicles. In this letter, we specifically address data-efficiency for the exchange of visual information in a collaborative visual SLAM setup. For efficient data exchange, we extend a compression scheme for local binary features by two additional modes providing support for local features with additional depth information and an inter-view coding mode exploiting the spatial relations between views of a stereo camera system. To demonstrate the coding framework, we use a centralized system architecture based on ORB-SLAM2, where energy-constrained agents extract local binary features and send a compressed version over a network to a more powerful agent, which is capable of running several visual SLAM instances in parallel. We exploit the information from other agents by detecting the overlap between already mapped areas and subsequent merging of the maps. Henceforth, the participants contribute to a joint representation and benefit from shared map information. We show a reduction in terms of data-rate by 70.8% using the feature compression and a reduction in absolute trajectory error by 53.7% using the collaborative mapping strategy with three agents on the well-known KITTI dataset. For the benefit of the community, we provide a public version of the source code.
doi_str_mv 10.1109/LRA.2018.2878920
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2018_2878920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8516392</ieee_id><sourcerecordid>2298375452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-c35ced5cefbeeda92a828359de56643d658cd5a3ec8962a1d56f9b60c41d03433</originalsourceid><addsrcrecordid>eNpNkEtLw0AURgdRsNTuBTcB163zyLxwVUJbhYig1u0wmbmpKWlTZxLRf29Kiri4j8X57oWD0DXBM0Kwvstf5jOKiZpRJZWm-AyNKJNyyqQQ5__2SzSJcYsxJpxKpvkI3WdNXduiCbatviB5r2Jn6-Q1nz8l61jtN0nW7A4BYgSfLMG2XYBk8e0-7H4DV-iitHWEyWmO0Xq5eMsepvnz6jGb51PHuGyP3YHvqywAvNXUKqoY1x64ECnzgivnuWXglBbUEs9FqQuBXUo8ZiljY3Q73D2E5rOD2Jpt04V9_9JQqhWTPOW0p_BAudDEGKA0h1DtbPgxBJujJdNbMkdL5mSpj9wMkQoA_nDFiWCasl9dFmHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298375452</pqid></control><display><type>article</type><title>Collaborative Visual SLAM Using Compressed Feature Exchange</title><source>IEEE Electronic Library (IEL)</source><creator>Van Opdenbosch, Dominik ; Steinbach, Eckehard</creator><creatorcontrib>Van Opdenbosch, Dominik ; Steinbach, Eckehard</creatorcontrib><description>In the field of robotics, collaborative simultaneous localization and mapping (SLAM) is still a challenging problem. The exploration of unknown large-scale environments benefits from sharing the work among multiple agents possibly equipped with different abilities, such as aerial or ground-based vehicles. In this letter, we specifically address data-efficiency for the exchange of visual information in a collaborative visual SLAM setup. For efficient data exchange, we extend a compression scheme for local binary features by two additional modes providing support for local features with additional depth information and an inter-view coding mode exploiting the spatial relations between views of a stereo camera system. To demonstrate the coding framework, we use a centralized system architecture based on ORB-SLAM2, where energy-constrained agents extract local binary features and send a compressed version over a network to a more powerful agent, which is capable of running several visual SLAM instances in parallel. We exploit the information from other agents by detecting the overlap between already mapped areas and subsequent merging of the maps. Henceforth, the participants contribute to a joint representation and benefit from shared map information. We show a reduction in terms of data-rate by 70.8% using the feature compression and a reduction in absolute trajectory error by 53.7% using the collaborative mapping strategy with three agents on the well-known KITTI dataset. For the benefit of the community, we provide a public version of the source code.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2018.2878920</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cameras ; Coding ; Collaboration ; Computer architecture ; Data compression ; Data exchange ; Encoding ; Feature extraction ; localization ; mapping ; Multi-robot systems ; Reduction ; Robotics ; Servers ; Simultaneous localization and mapping ; SLAM ; Source code ; visual-based navigation ; Visualization</subject><ispartof>IEEE robotics and automation letters, 2019-01, Vol.4 (1), p.57-64</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-c35ced5cefbeeda92a828359de56643d658cd5a3ec8962a1d56f9b60c41d03433</citedby><cites>FETCH-LOGICAL-c357t-c35ced5cefbeeda92a828359de56643d658cd5a3ec8962a1d56f9b60c41d03433</cites><orcidid>0000-0001-8853-2703 ; 0000-0001-9618-100X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8516392$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8516392$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Van Opdenbosch, Dominik</creatorcontrib><creatorcontrib>Steinbach, Eckehard</creatorcontrib><title>Collaborative Visual SLAM Using Compressed Feature Exchange</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>In the field of robotics, collaborative simultaneous localization and mapping (SLAM) is still a challenging problem. The exploration of unknown large-scale environments benefits from sharing the work among multiple agents possibly equipped with different abilities, such as aerial or ground-based vehicles. In this letter, we specifically address data-efficiency for the exchange of visual information in a collaborative visual SLAM setup. For efficient data exchange, we extend a compression scheme for local binary features by two additional modes providing support for local features with additional depth information and an inter-view coding mode exploiting the spatial relations between views of a stereo camera system. To demonstrate the coding framework, we use a centralized system architecture based on ORB-SLAM2, where energy-constrained agents extract local binary features and send a compressed version over a network to a more powerful agent, which is capable of running several visual SLAM instances in parallel. We exploit the information from other agents by detecting the overlap between already mapped areas and subsequent merging of the maps. Henceforth, the participants contribute to a joint representation and benefit from shared map information. We show a reduction in terms of data-rate by 70.8% using the feature compression and a reduction in absolute trajectory error by 53.7% using the collaborative mapping strategy with three agents on the well-known KITTI dataset. For the benefit of the community, we provide a public version of the source code.</description><subject>Cameras</subject><subject>Coding</subject><subject>Collaboration</subject><subject>Computer architecture</subject><subject>Data compression</subject><subject>Data exchange</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>localization</subject><subject>mapping</subject><subject>Multi-robot systems</subject><subject>Reduction</subject><subject>Robotics</subject><subject>Servers</subject><subject>Simultaneous localization and mapping</subject><subject>SLAM</subject><subject>Source code</subject><subject>visual-based navigation</subject><subject>Visualization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLw0AURgdRsNTuBTcB163zyLxwVUJbhYig1u0wmbmpKWlTZxLRf29Kiri4j8X57oWD0DXBM0Kwvstf5jOKiZpRJZWm-AyNKJNyyqQQ5__2SzSJcYsxJpxKpvkI3WdNXduiCbatviB5r2Jn6-Q1nz8l61jtN0nW7A4BYgSfLMG2XYBk8e0-7H4DV-iitHWEyWmO0Xq5eMsepvnz6jGb51PHuGyP3YHvqywAvNXUKqoY1x64ECnzgivnuWXglBbUEs9FqQuBXUo8ZiljY3Q73D2E5rOD2Jpt04V9_9JQqhWTPOW0p_BAudDEGKA0h1DtbPgxBJujJdNbMkdL5mSpj9wMkQoA_nDFiWCasl9dFmHw</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Van Opdenbosch, Dominik</creator><creator>Steinbach, Eckehard</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8853-2703</orcidid><orcidid>https://orcid.org/0000-0001-9618-100X</orcidid></search><sort><creationdate>201901</creationdate><title>Collaborative Visual SLAM Using Compressed Feature Exchange</title><author>Van Opdenbosch, Dominik ; Steinbach, Eckehard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-c35ced5cefbeeda92a828359de56643d658cd5a3ec8962a1d56f9b60c41d03433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cameras</topic><topic>Coding</topic><topic>Collaboration</topic><topic>Computer architecture</topic><topic>Data compression</topic><topic>Data exchange</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>localization</topic><topic>mapping</topic><topic>Multi-robot systems</topic><topic>Reduction</topic><topic>Robotics</topic><topic>Servers</topic><topic>Simultaneous localization and mapping</topic><topic>SLAM</topic><topic>Source code</topic><topic>visual-based navigation</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Opdenbosch, Dominik</creatorcontrib><creatorcontrib>Steinbach, Eckehard</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Van Opdenbosch, Dominik</au><au>Steinbach, Eckehard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative Visual SLAM Using Compressed Feature Exchange</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2019-01</date><risdate>2019</risdate><volume>4</volume><issue>1</issue><spage>57</spage><epage>64</epage><pages>57-64</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>In the field of robotics, collaborative simultaneous localization and mapping (SLAM) is still a challenging problem. The exploration of unknown large-scale environments benefits from sharing the work among multiple agents possibly equipped with different abilities, such as aerial or ground-based vehicles. In this letter, we specifically address data-efficiency for the exchange of visual information in a collaborative visual SLAM setup. For efficient data exchange, we extend a compression scheme for local binary features by two additional modes providing support for local features with additional depth information and an inter-view coding mode exploiting the spatial relations between views of a stereo camera system. To demonstrate the coding framework, we use a centralized system architecture based on ORB-SLAM2, where energy-constrained agents extract local binary features and send a compressed version over a network to a more powerful agent, which is capable of running several visual SLAM instances in parallel. We exploit the information from other agents by detecting the overlap between already mapped areas and subsequent merging of the maps. Henceforth, the participants contribute to a joint representation and benefit from shared map information. We show a reduction in terms of data-rate by 70.8% using the feature compression and a reduction in absolute trajectory error by 53.7% using the collaborative mapping strategy with three agents on the well-known KITTI dataset. For the benefit of the community, we provide a public version of the source code.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2018.2878920</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8853-2703</orcidid><orcidid>https://orcid.org/0000-0001-9618-100X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2019-01, Vol.4 (1), p.57-64
issn 2377-3766
2377-3766
language eng
recordid cdi_crossref_primary_10_1109_LRA_2018_2878920
source IEEE Electronic Library (IEL)
subjects Cameras
Coding
Collaboration
Computer architecture
Data compression
Data exchange
Encoding
Feature extraction
localization
mapping
Multi-robot systems
Reduction
Robotics
Servers
Simultaneous localization and mapping
SLAM
Source code
visual-based navigation
Visualization
title Collaborative Visual SLAM Using Compressed Feature Exchange
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A05%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20Visual%20SLAM%20Using%20Compressed%20Feature%20Exchange&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Van%20Opdenbosch,%20Dominik&rft.date=2019-01&rft.volume=4&rft.issue=1&rft.spage=57&rft.epage=64&rft.pages=57-64&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2018.2878920&rft_dat=%3Cproquest_RIE%3E2298375452%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298375452&rft_id=info:pmid/&rft_ieee_id=8516392&rfr_iscdi=true