Analyzing the Sensitivity of the Optimal Assignment in Probabilistic Multi-Robot Task Allocation
We consider multi-robot teams operating in uncertain dynamic settings where the costs used for computing task-allocations are not known exactly. In such cases, the desire to minimize the team's expected cost might need to be curtailed if, in doing so, the risk that results is intolerable. We de...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2017-01, Vol.2 (1), p.193-200 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 200 |
---|---|
container_issue | 1 |
container_start_page | 193 |
container_title | IEEE robotics and automation letters |
container_volume | 2 |
creator | Nam, Changjoo Shell, Dylan A. |
description | We consider multi-robot teams operating in uncertain dynamic settings where the costs used for computing task-allocations are not known exactly. In such cases, the desire to minimize the team's expected cost might need to be curtailed if, in doing so, the risk that results is intolerable. We describe a parameterizable variant of the assignment problem that enables a designer to express such preferences, allowing one to take a risk-averse position if the problem demands it. We consider costs that are random variables, but which need not be independent-a useful setting because it permits one to represent inter-robot couplings. We analyze the sensitivity of assignment optima to particular risk valuations and introduce algorithms that provide an interval for the preference parameter in which all values result in the same optimal assignment. This helps in understanding the effects of risk on the problem, and whether the risk-based model is useful in a given problem domain. |
doi_str_mv | 10.1109/LRA.2016.2588138 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2016_2588138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7505598</ieee_id><sourcerecordid>10_1109_LRA_2016_2588138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-f032f9658a18dbb1f9b1208907fdf7d31978b44cf7e8bc01d0a7a5156c353b023</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGrvgpf8ga2TpNlkj0vxCyqVWs9rkk1qNN2UTRTqr7e1RTy9w8s8w_AgdElgTAhU17NFPaZAyjHlUhImT9CAMiEKJsry9N98jkYpvQMA4VSwig_Qa92psP323QrnN4ufbZd89l8-b3F0v9V8k_1aBVyn5Ffd2nYZ-w4_9VEr7YNP2Rv8-BmyLxZRx4yXKn3gOoRoVPaxu0BnToVkR8ccopfbm-X0vpjN7x6m9awwtGS5cMCoq0ouFZGt1sRVmlCQFQjXOtEyUgmpJxPjhJXaAGlBCcUJLw3jTANlQwSHu6aPKfXWNZt-93e_bQg0e0nNTlKzl9QcJe2QqwPirbV_64ID55VkP4kQY8o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analyzing the Sensitivity of the Optimal Assignment in Probabilistic Multi-Robot Task Allocation</title><source>IEEE Electronic Library (IEL)</source><creator>Nam, Changjoo ; Shell, Dylan A.</creator><creatorcontrib>Nam, Changjoo ; Shell, Dylan A.</creatorcontrib><description>We consider multi-robot teams operating in uncertain dynamic settings where the costs used for computing task-allocations are not known exactly. In such cases, the desire to minimize the team's expected cost might need to be curtailed if, in doing so, the risk that results is intolerable. We describe a parameterizable variant of the assignment problem that enables a designer to express such preferences, allowing one to take a risk-averse position if the problem demands it. We consider costs that are random variables, but which need not be independent-a useful setting because it permits one to represent inter-robot couplings. We analyze the sensitivity of assignment optima to particular risk valuations and introduce algorithms that provide an interval for the preference parameter in which all values result in the same optimal assignment. This helps in understanding the effects of risk on the problem, and whether the risk-based model is useful in a given problem domain.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2016.2588138</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Coordination ; networked robots ; planning and scheduling ; Random variables ; Resource management ; Robot kinematics ; Sensitivity ; Stochastic processes ; Uncertainty</subject><ispartof>IEEE robotics and automation letters, 2017-01, Vol.2 (1), p.193-200</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-f032f9658a18dbb1f9b1208907fdf7d31978b44cf7e8bc01d0a7a5156c353b023</citedby><cites>FETCH-LOGICAL-c263t-f032f9658a18dbb1f9b1208907fdf7d31978b44cf7e8bc01d0a7a5156c353b023</cites><orcidid>0000-0002-9169-0785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7505598$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7505598$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nam, Changjoo</creatorcontrib><creatorcontrib>Shell, Dylan A.</creatorcontrib><title>Analyzing the Sensitivity of the Optimal Assignment in Probabilistic Multi-Robot Task Allocation</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>We consider multi-robot teams operating in uncertain dynamic settings where the costs used for computing task-allocations are not known exactly. In such cases, the desire to minimize the team's expected cost might need to be curtailed if, in doing so, the risk that results is intolerable. We describe a parameterizable variant of the assignment problem that enables a designer to express such preferences, allowing one to take a risk-averse position if the problem demands it. We consider costs that are random variables, but which need not be independent-a useful setting because it permits one to represent inter-robot couplings. We analyze the sensitivity of assignment optima to particular risk valuations and introduce algorithms that provide an interval for the preference parameter in which all values result in the same optimal assignment. This helps in understanding the effects of risk on the problem, and whether the risk-based model is useful in a given problem domain.</description><subject>Coordination</subject><subject>networked robots</subject><subject>planning and scheduling</subject><subject>Random variables</subject><subject>Resource management</subject><subject>Robot kinematics</subject><subject>Sensitivity</subject><subject>Stochastic processes</subject><subject>Uncertainty</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWGrvgpf8ga2TpNlkj0vxCyqVWs9rkk1qNN2UTRTqr7e1RTy9w8s8w_AgdElgTAhU17NFPaZAyjHlUhImT9CAMiEKJsry9N98jkYpvQMA4VSwig_Qa92psP323QrnN4ufbZd89l8-b3F0v9V8k_1aBVyn5Ffd2nYZ-w4_9VEr7YNP2Rv8-BmyLxZRx4yXKn3gOoRoVPaxu0BnToVkR8ccopfbm-X0vpjN7x6m9awwtGS5cMCoq0ouFZGt1sRVmlCQFQjXOtEyUgmpJxPjhJXaAGlBCcUJLw3jTANlQwSHu6aPKfXWNZt-93e_bQg0e0nNTlKzl9QcJe2QqwPirbV_64ID55VkP4kQY8o</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Nam, Changjoo</creator><creator>Shell, Dylan A.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9169-0785</orcidid></search><sort><creationdate>20170101</creationdate><title>Analyzing the Sensitivity of the Optimal Assignment in Probabilistic Multi-Robot Task Allocation</title><author>Nam, Changjoo ; Shell, Dylan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-f032f9658a18dbb1f9b1208907fdf7d31978b44cf7e8bc01d0a7a5156c353b023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Coordination</topic><topic>networked robots</topic><topic>planning and scheduling</topic><topic>Random variables</topic><topic>Resource management</topic><topic>Robot kinematics</topic><topic>Sensitivity</topic><topic>Stochastic processes</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nam, Changjoo</creatorcontrib><creatorcontrib>Shell, Dylan A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nam, Changjoo</au><au>Shell, Dylan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing the Sensitivity of the Optimal Assignment in Probabilistic Multi-Robot Task Allocation</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>2</volume><issue>1</issue><spage>193</spage><epage>200</epage><pages>193-200</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>We consider multi-robot teams operating in uncertain dynamic settings where the costs used for computing task-allocations are not known exactly. In such cases, the desire to minimize the team's expected cost might need to be curtailed if, in doing so, the risk that results is intolerable. We describe a parameterizable variant of the assignment problem that enables a designer to express such preferences, allowing one to take a risk-averse position if the problem demands it. We consider costs that are random variables, but which need not be independent-a useful setting because it permits one to represent inter-robot couplings. We analyze the sensitivity of assignment optima to particular risk valuations and introduce algorithms that provide an interval for the preference parameter in which all values result in the same optimal assignment. This helps in understanding the effects of risk on the problem, and whether the risk-based model is useful in a given problem domain.</abstract><pub>IEEE</pub><doi>10.1109/LRA.2016.2588138</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9169-0785</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2017-01, Vol.2 (1), p.193-200 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LRA_2016_2588138 |
source | IEEE Electronic Library (IEL) |
subjects | Coordination networked robots planning and scheduling Random variables Resource management Robot kinematics Sensitivity Stochastic processes Uncertainty |
title | Analyzing the Sensitivity of the Optimal Assignment in Probabilistic Multi-Robot Task Allocation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A24%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20the%20Sensitivity%20of%20the%20Optimal%20Assignment%20in%20Probabilistic%20Multi-Robot%20Task%20Allocation&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Nam,%20Changjoo&rft.date=2017-01-01&rft.volume=2&rft.issue=1&rft.spage=193&rft.epage=200&rft.pages=193-200&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2016.2588138&rft_dat=%3Ccrossref_RIE%3E10_1109_LRA_2016_2588138%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7505598&rfr_iscdi=true |