Analyzing the Sensitivity of the Optimal Assignment in Probabilistic Multi-Robot Task Allocation

We consider multi-robot teams operating in uncertain dynamic settings where the costs used for computing task-allocations are not known exactly. In such cases, the desire to minimize the team's expected cost might need to be curtailed if, in doing so, the risk that results is intolerable. We de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2017-01, Vol.2 (1), p.193-200
Hauptverfasser: Nam, Changjoo, Shell, Dylan A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 200
container_issue 1
container_start_page 193
container_title IEEE robotics and automation letters
container_volume 2
creator Nam, Changjoo
Shell, Dylan A.
description We consider multi-robot teams operating in uncertain dynamic settings where the costs used for computing task-allocations are not known exactly. In such cases, the desire to minimize the team's expected cost might need to be curtailed if, in doing so, the risk that results is intolerable. We describe a parameterizable variant of the assignment problem that enables a designer to express such preferences, allowing one to take a risk-averse position if the problem demands it. We consider costs that are random variables, but which need not be independent-a useful setting because it permits one to represent inter-robot couplings. We analyze the sensitivity of assignment optima to particular risk valuations and introduce algorithms that provide an interval for the preference parameter in which all values result in the same optimal assignment. This helps in understanding the effects of risk on the problem, and whether the risk-based model is useful in a given problem domain.
doi_str_mv 10.1109/LRA.2016.2588138
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2016_2588138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7505598</ieee_id><sourcerecordid>10_1109_LRA_2016_2588138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-f032f9658a18dbb1f9b1208907fdf7d31978b44cf7e8bc01d0a7a5156c353b023</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGrvgpf8ga2TpNlkj0vxCyqVWs9rkk1qNN2UTRTqr7e1RTy9w8s8w_AgdElgTAhU17NFPaZAyjHlUhImT9CAMiEKJsry9N98jkYpvQMA4VSwig_Qa92psP323QrnN4ufbZd89l8-b3F0v9V8k_1aBVyn5Ffd2nYZ-w4_9VEr7YNP2Rv8-BmyLxZRx4yXKn3gOoRoVPaxu0BnToVkR8ccopfbm-X0vpjN7x6m9awwtGS5cMCoq0ouFZGt1sRVmlCQFQjXOtEyUgmpJxPjhJXaAGlBCcUJLw3jTANlQwSHu6aPKfXWNZt-93e_bQg0e0nNTlKzl9QcJe2QqwPirbV_64ID55VkP4kQY8o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analyzing the Sensitivity of the Optimal Assignment in Probabilistic Multi-Robot Task Allocation</title><source>IEEE Electronic Library (IEL)</source><creator>Nam, Changjoo ; Shell, Dylan A.</creator><creatorcontrib>Nam, Changjoo ; Shell, Dylan A.</creatorcontrib><description>We consider multi-robot teams operating in uncertain dynamic settings where the costs used for computing task-allocations are not known exactly. In such cases, the desire to minimize the team's expected cost might need to be curtailed if, in doing so, the risk that results is intolerable. We describe a parameterizable variant of the assignment problem that enables a designer to express such preferences, allowing one to take a risk-averse position if the problem demands it. We consider costs that are random variables, but which need not be independent-a useful setting because it permits one to represent inter-robot couplings. We analyze the sensitivity of assignment optima to particular risk valuations and introduce algorithms that provide an interval for the preference parameter in which all values result in the same optimal assignment. This helps in understanding the effects of risk on the problem, and whether the risk-based model is useful in a given problem domain.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2016.2588138</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Coordination ; networked robots ; planning and scheduling ; Random variables ; Resource management ; Robot kinematics ; Sensitivity ; Stochastic processes ; Uncertainty</subject><ispartof>IEEE robotics and automation letters, 2017-01, Vol.2 (1), p.193-200</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-f032f9658a18dbb1f9b1208907fdf7d31978b44cf7e8bc01d0a7a5156c353b023</citedby><cites>FETCH-LOGICAL-c263t-f032f9658a18dbb1f9b1208907fdf7d31978b44cf7e8bc01d0a7a5156c353b023</cites><orcidid>0000-0002-9169-0785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7505598$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7505598$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nam, Changjoo</creatorcontrib><creatorcontrib>Shell, Dylan A.</creatorcontrib><title>Analyzing the Sensitivity of the Optimal Assignment in Probabilistic Multi-Robot Task Allocation</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>We consider multi-robot teams operating in uncertain dynamic settings where the costs used for computing task-allocations are not known exactly. In such cases, the desire to minimize the team's expected cost might need to be curtailed if, in doing so, the risk that results is intolerable. We describe a parameterizable variant of the assignment problem that enables a designer to express such preferences, allowing one to take a risk-averse position if the problem demands it. We consider costs that are random variables, but which need not be independent-a useful setting because it permits one to represent inter-robot couplings. We analyze the sensitivity of assignment optima to particular risk valuations and introduce algorithms that provide an interval for the preference parameter in which all values result in the same optimal assignment. This helps in understanding the effects of risk on the problem, and whether the risk-based model is useful in a given problem domain.</description><subject>Coordination</subject><subject>networked robots</subject><subject>planning and scheduling</subject><subject>Random variables</subject><subject>Resource management</subject><subject>Robot kinematics</subject><subject>Sensitivity</subject><subject>Stochastic processes</subject><subject>Uncertainty</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWGrvgpf8ga2TpNlkj0vxCyqVWs9rkk1qNN2UTRTqr7e1RTy9w8s8w_AgdElgTAhU17NFPaZAyjHlUhImT9CAMiEKJsry9N98jkYpvQMA4VSwig_Qa92psP323QrnN4ufbZd89l8-b3F0v9V8k_1aBVyn5Ffd2nYZ-w4_9VEr7YNP2Rv8-BmyLxZRx4yXKn3gOoRoVPaxu0BnToVkR8ccopfbm-X0vpjN7x6m9awwtGS5cMCoq0ouFZGt1sRVmlCQFQjXOtEyUgmpJxPjhJXaAGlBCcUJLw3jTANlQwSHu6aPKfXWNZt-93e_bQg0e0nNTlKzl9QcJe2QqwPirbV_64ID55VkP4kQY8o</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Nam, Changjoo</creator><creator>Shell, Dylan A.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9169-0785</orcidid></search><sort><creationdate>20170101</creationdate><title>Analyzing the Sensitivity of the Optimal Assignment in Probabilistic Multi-Robot Task Allocation</title><author>Nam, Changjoo ; Shell, Dylan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-f032f9658a18dbb1f9b1208907fdf7d31978b44cf7e8bc01d0a7a5156c353b023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Coordination</topic><topic>networked robots</topic><topic>planning and scheduling</topic><topic>Random variables</topic><topic>Resource management</topic><topic>Robot kinematics</topic><topic>Sensitivity</topic><topic>Stochastic processes</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nam, Changjoo</creatorcontrib><creatorcontrib>Shell, Dylan A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nam, Changjoo</au><au>Shell, Dylan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing the Sensitivity of the Optimal Assignment in Probabilistic Multi-Robot Task Allocation</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>2</volume><issue>1</issue><spage>193</spage><epage>200</epage><pages>193-200</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>We consider multi-robot teams operating in uncertain dynamic settings where the costs used for computing task-allocations are not known exactly. In such cases, the desire to minimize the team's expected cost might need to be curtailed if, in doing so, the risk that results is intolerable. We describe a parameterizable variant of the assignment problem that enables a designer to express such preferences, allowing one to take a risk-averse position if the problem demands it. We consider costs that are random variables, but which need not be independent-a useful setting because it permits one to represent inter-robot couplings. We analyze the sensitivity of assignment optima to particular risk valuations and introduce algorithms that provide an interval for the preference parameter in which all values result in the same optimal assignment. This helps in understanding the effects of risk on the problem, and whether the risk-based model is useful in a given problem domain.</abstract><pub>IEEE</pub><doi>10.1109/LRA.2016.2588138</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9169-0785</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2017-01, Vol.2 (1), p.193-200
issn 2377-3766
2377-3766
language eng
recordid cdi_crossref_primary_10_1109_LRA_2016_2588138
source IEEE Electronic Library (IEL)
subjects Coordination
networked robots
planning and scheduling
Random variables
Resource management
Robot kinematics
Sensitivity
Stochastic processes
Uncertainty
title Analyzing the Sensitivity of the Optimal Assignment in Probabilistic Multi-Robot Task Allocation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A24%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20the%20Sensitivity%20of%20the%20Optimal%20Assignment%20in%20Probabilistic%20Multi-Robot%20Task%20Allocation&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Nam,%20Changjoo&rft.date=2017-01-01&rft.volume=2&rft.issue=1&rft.spage=193&rft.epage=200&rft.pages=193-200&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2016.2588138&rft_dat=%3Ccrossref_RIE%3E10_1109_LRA_2016_2588138%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7505598&rfr_iscdi=true