Influence of Nitrogen doping in Vanadium-compensated 4H-SiC on transient photocurrent response for photoconductive microwave generation
High-frequency microwave generation based on PCSS devices requires the fastest possible response speed. In this study, we successfully demonstrated controlled donor level doping in 4H-SiC PCSS devices to reduce the carrier recombination lifetime and enhance high-frequency microwave generation. PCSSs...
Gespeichert in:
Veröffentlicht in: | IEEE photonics technology letters 2024-04, Vol.36 (8), p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | IEEE photonics technology letters |
container_volume | 36 |
creator | Chu, Xu Meng, Jin Wang, Haitao Zhu, Danni Yuan, Yuzhang Huang, Liyang Xiang, Zhongwu Han, Jiangfeng Deng, Bingfang Cui, Yancheng Zhang, Jiahao |
description | High-frequency microwave generation based on PCSS devices requires the fastest possible response speed. In this study, we successfully demonstrated controlled donor level doping in 4H-SiC PCSS devices to reduce the carrier recombination lifetime and enhance high-frequency microwave generation. PCSSs with three different doping of nitrogen concentrations were manufactured and compared. By femtosecond transient absorption spectroscopy (fs-TAS), we observed that the 4H-SiC PCSS devices doped with lower nitrogen concentrations exhibited significantly shorter carrier recombination lifetime and faster response speed, ranging from 137 ps to 118 ps. Furthermore, experiment results demonstrate that if nitrogen doping concentration was below 10 16 cm -3 , the PCSS devices could generate high-frequency microwave up to 10 GHz, with improved response speed and higher photoelectric efficiency. Consequently, by precisely controlling the nitrogen concentration, it is feasible to enhance the response frequency of photoconductive microwaves. |
doi_str_mv | 10.1109/LPT.2024.3373479 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LPT_2024_3373479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10459265</ieee_id><sourcerecordid>2969041265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-c288e265a2106cb23418748956cd4f6490121a5451fb255626905b393178dced3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQjBBIQOHOgYMlzileP5L4iCoelSpAonCNXGcDRtQOtgPiC_htXLUHLruz2tmZ1RTFGdApAFWXi8fllFEmppzXXNRqrzgCJaCkUIv9jGnGAFweFscxvlMKQnJxVPzOXf8xojNIfE_ubQr-FR3p_GDdK7GOvGinOzuuS-PXA7qoE3ZE3JVPdka8IyloFy26RIY3n7wZQ9gMAePgXUTS-7DbeNeNJtkvJGtrgv_WGWUrDDpZ706Kg15_RDzd9UnxfHO9nN2Vi4fb-exqURqmWMq1aZBVUjOglVkxLqCpRaNkZTrRV0JRYKClkNCvmJQVqxSVK6441E1nsOOT4mKrOwT_OWJM7bsfg8uWLVOZLCCrZxbdsvKjMQbs2yHYtQ4_LdB2E3eb4243cbe7uPPJ-fbEIuI_upBqo_gHFEt9Rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969041265</pqid></control><display><type>article</type><title>Influence of Nitrogen doping in Vanadium-compensated 4H-SiC on transient photocurrent response for photoconductive microwave generation</title><source>IEEE Electronic Library (IEL)</source><creator>Chu, Xu ; Meng, Jin ; Wang, Haitao ; Zhu, Danni ; Yuan, Yuzhang ; Huang, Liyang ; Xiang, Zhongwu ; Han, Jiangfeng ; Deng, Bingfang ; Cui, Yancheng ; Zhang, Jiahao</creator><creatorcontrib>Chu, Xu ; Meng, Jin ; Wang, Haitao ; Zhu, Danni ; Yuan, Yuzhang ; Huang, Liyang ; Xiang, Zhongwu ; Han, Jiangfeng ; Deng, Bingfang ; Cui, Yancheng ; Zhang, Jiahao</creatorcontrib><description>High-frequency microwave generation based on PCSS devices requires the fastest possible response speed. In this study, we successfully demonstrated controlled donor level doping in 4H-SiC PCSS devices to reduce the carrier recombination lifetime and enhance high-frequency microwave generation. PCSSs with three different doping of nitrogen concentrations were manufactured and compared. By femtosecond transient absorption spectroscopy (fs-TAS), we observed that the 4H-SiC PCSS devices doped with lower nitrogen concentrations exhibited significantly shorter carrier recombination lifetime and faster response speed, ranging from 137 ps to 118 ps. Furthermore, experiment results demonstrate that if nitrogen doping concentration was below 10 16 cm -3 , the PCSS devices could generate high-frequency microwave up to 10 GHz, with improved response speed and higher photoelectric efficiency. Consequently, by precisely controlling the nitrogen concentration, it is feasible to enhance the response frequency of photoconductive microwaves.</description><identifier>ISSN: 1041-1135</identifier><identifier>EISSN: 1941-0174</identifier><identifier>DOI: 10.1109/LPT.2024.3373479</identifier><identifier>CODEN: IPTLEL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Absorption spectroscopy ; carrier lifetime ; Carrier recombination ; Devices ; Doping ; Impurities ; Microwave generation ; Microwave theory and techniques ; Microwaves ; Nitrogen ; Nitrogen doping 4H-SiC ; photoconductive microwave ; Photoconductivity ; photoelectric conversion ; Photoelectric effect ; Photoelectricity ; Radiative recombination ; response speed ; Silicon carbide</subject><ispartof>IEEE photonics technology letters, 2024-04, Vol.36 (8), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-c288e265a2106cb23418748956cd4f6490121a5451fb255626905b393178dced3</citedby><cites>FETCH-LOGICAL-c292t-c288e265a2106cb23418748956cd4f6490121a5451fb255626905b393178dced3</cites><orcidid>0000-0001-6844-3711 ; 0000-0001-7483-0144 ; 0000-0003-3701-154X ; 0000-0003-2017-7893 ; 0000-0001-6531-2679 ; 0000-0001-6510-6103 ; 0000-0002-5507-079X ; 0000-0001-6088-7481 ; 0000-0003-4672-0567 ; 0000-0001-6963-6945 ; 0000-0001-7083-3778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10459265$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10459265$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chu, Xu</creatorcontrib><creatorcontrib>Meng, Jin</creatorcontrib><creatorcontrib>Wang, Haitao</creatorcontrib><creatorcontrib>Zhu, Danni</creatorcontrib><creatorcontrib>Yuan, Yuzhang</creatorcontrib><creatorcontrib>Huang, Liyang</creatorcontrib><creatorcontrib>Xiang, Zhongwu</creatorcontrib><creatorcontrib>Han, Jiangfeng</creatorcontrib><creatorcontrib>Deng, Bingfang</creatorcontrib><creatorcontrib>Cui, Yancheng</creatorcontrib><creatorcontrib>Zhang, Jiahao</creatorcontrib><title>Influence of Nitrogen doping in Vanadium-compensated 4H-SiC on transient photocurrent response for photoconductive microwave generation</title><title>IEEE photonics technology letters</title><addtitle>LPT</addtitle><description>High-frequency microwave generation based on PCSS devices requires the fastest possible response speed. In this study, we successfully demonstrated controlled donor level doping in 4H-SiC PCSS devices to reduce the carrier recombination lifetime and enhance high-frequency microwave generation. PCSSs with three different doping of nitrogen concentrations were manufactured and compared. By femtosecond transient absorption spectroscopy (fs-TAS), we observed that the 4H-SiC PCSS devices doped with lower nitrogen concentrations exhibited significantly shorter carrier recombination lifetime and faster response speed, ranging from 137 ps to 118 ps. Furthermore, experiment results demonstrate that if nitrogen doping concentration was below 10 16 cm -3 , the PCSS devices could generate high-frequency microwave up to 10 GHz, with improved response speed and higher photoelectric efficiency. Consequently, by precisely controlling the nitrogen concentration, it is feasible to enhance the response frequency of photoconductive microwaves.</description><subject>Absorption spectroscopy</subject><subject>carrier lifetime</subject><subject>Carrier recombination</subject><subject>Devices</subject><subject>Doping</subject><subject>Impurities</subject><subject>Microwave generation</subject><subject>Microwave theory and techniques</subject><subject>Microwaves</subject><subject>Nitrogen</subject><subject>Nitrogen doping 4H-SiC</subject><subject>photoconductive microwave</subject><subject>Photoconductivity</subject><subject>photoelectric conversion</subject><subject>Photoelectric effect</subject><subject>Photoelectricity</subject><subject>Radiative recombination</subject><subject>response speed</subject><subject>Silicon carbide</subject><issn>1041-1135</issn><issn>1941-0174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMtOwzAQjBBIQOHOgYMlzileP5L4iCoelSpAonCNXGcDRtQOtgPiC_htXLUHLruz2tmZ1RTFGdApAFWXi8fllFEmppzXXNRqrzgCJaCkUIv9jGnGAFweFscxvlMKQnJxVPzOXf8xojNIfE_ubQr-FR3p_GDdK7GOvGinOzuuS-PXA7qoE3ZE3JVPdka8IyloFy26RIY3n7wZQ9gMAePgXUTS-7DbeNeNJtkvJGtrgv_WGWUrDDpZ706Kg15_RDzd9UnxfHO9nN2Vi4fb-exqURqmWMq1aZBVUjOglVkxLqCpRaNkZTrRV0JRYKClkNCvmJQVqxSVK6441E1nsOOT4mKrOwT_OWJM7bsfg8uWLVOZLCCrZxbdsvKjMQbs2yHYtQ4_LdB2E3eb4243cbe7uPPJ-fbEIuI_upBqo_gHFEt9Rg</recordid><startdate>20240415</startdate><enddate>20240415</enddate><creator>Chu, Xu</creator><creator>Meng, Jin</creator><creator>Wang, Haitao</creator><creator>Zhu, Danni</creator><creator>Yuan, Yuzhang</creator><creator>Huang, Liyang</creator><creator>Xiang, Zhongwu</creator><creator>Han, Jiangfeng</creator><creator>Deng, Bingfang</creator><creator>Cui, Yancheng</creator><creator>Zhang, Jiahao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6844-3711</orcidid><orcidid>https://orcid.org/0000-0001-7483-0144</orcidid><orcidid>https://orcid.org/0000-0003-3701-154X</orcidid><orcidid>https://orcid.org/0000-0003-2017-7893</orcidid><orcidid>https://orcid.org/0000-0001-6531-2679</orcidid><orcidid>https://orcid.org/0000-0001-6510-6103</orcidid><orcidid>https://orcid.org/0000-0002-5507-079X</orcidid><orcidid>https://orcid.org/0000-0001-6088-7481</orcidid><orcidid>https://orcid.org/0000-0003-4672-0567</orcidid><orcidid>https://orcid.org/0000-0001-6963-6945</orcidid><orcidid>https://orcid.org/0000-0001-7083-3778</orcidid></search><sort><creationdate>20240415</creationdate><title>Influence of Nitrogen doping in Vanadium-compensated 4H-SiC on transient photocurrent response for photoconductive microwave generation</title><author>Chu, Xu ; Meng, Jin ; Wang, Haitao ; Zhu, Danni ; Yuan, Yuzhang ; Huang, Liyang ; Xiang, Zhongwu ; Han, Jiangfeng ; Deng, Bingfang ; Cui, Yancheng ; Zhang, Jiahao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-c288e265a2106cb23418748956cd4f6490121a5451fb255626905b393178dced3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectroscopy</topic><topic>carrier lifetime</topic><topic>Carrier recombination</topic><topic>Devices</topic><topic>Doping</topic><topic>Impurities</topic><topic>Microwave generation</topic><topic>Microwave theory and techniques</topic><topic>Microwaves</topic><topic>Nitrogen</topic><topic>Nitrogen doping 4H-SiC</topic><topic>photoconductive microwave</topic><topic>Photoconductivity</topic><topic>photoelectric conversion</topic><topic>Photoelectric effect</topic><topic>Photoelectricity</topic><topic>Radiative recombination</topic><topic>response speed</topic><topic>Silicon carbide</topic><toplevel>online_resources</toplevel><creatorcontrib>Chu, Xu</creatorcontrib><creatorcontrib>Meng, Jin</creatorcontrib><creatorcontrib>Wang, Haitao</creatorcontrib><creatorcontrib>Zhu, Danni</creatorcontrib><creatorcontrib>Yuan, Yuzhang</creatorcontrib><creatorcontrib>Huang, Liyang</creatorcontrib><creatorcontrib>Xiang, Zhongwu</creatorcontrib><creatorcontrib>Han, Jiangfeng</creatorcontrib><creatorcontrib>Deng, Bingfang</creatorcontrib><creatorcontrib>Cui, Yancheng</creatorcontrib><creatorcontrib>Zhang, Jiahao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE photonics technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chu, Xu</au><au>Meng, Jin</au><au>Wang, Haitao</au><au>Zhu, Danni</au><au>Yuan, Yuzhang</au><au>Huang, Liyang</au><au>Xiang, Zhongwu</au><au>Han, Jiangfeng</au><au>Deng, Bingfang</au><au>Cui, Yancheng</au><au>Zhang, Jiahao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Nitrogen doping in Vanadium-compensated 4H-SiC on transient photocurrent response for photoconductive microwave generation</atitle><jtitle>IEEE photonics technology letters</jtitle><stitle>LPT</stitle><date>2024-04-15</date><risdate>2024</risdate><volume>36</volume><issue>8</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1041-1135</issn><eissn>1941-0174</eissn><coden>IPTLEL</coden><abstract>High-frequency microwave generation based on PCSS devices requires the fastest possible response speed. In this study, we successfully demonstrated controlled donor level doping in 4H-SiC PCSS devices to reduce the carrier recombination lifetime and enhance high-frequency microwave generation. PCSSs with three different doping of nitrogen concentrations were manufactured and compared. By femtosecond transient absorption spectroscopy (fs-TAS), we observed that the 4H-SiC PCSS devices doped with lower nitrogen concentrations exhibited significantly shorter carrier recombination lifetime and faster response speed, ranging from 137 ps to 118 ps. Furthermore, experiment results demonstrate that if nitrogen doping concentration was below 10 16 cm -3 , the PCSS devices could generate high-frequency microwave up to 10 GHz, with improved response speed and higher photoelectric efficiency. Consequently, by precisely controlling the nitrogen concentration, it is feasible to enhance the response frequency of photoconductive microwaves.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LPT.2024.3373479</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6844-3711</orcidid><orcidid>https://orcid.org/0000-0001-7483-0144</orcidid><orcidid>https://orcid.org/0000-0003-3701-154X</orcidid><orcidid>https://orcid.org/0000-0003-2017-7893</orcidid><orcidid>https://orcid.org/0000-0001-6531-2679</orcidid><orcidid>https://orcid.org/0000-0001-6510-6103</orcidid><orcidid>https://orcid.org/0000-0002-5507-079X</orcidid><orcidid>https://orcid.org/0000-0001-6088-7481</orcidid><orcidid>https://orcid.org/0000-0003-4672-0567</orcidid><orcidid>https://orcid.org/0000-0001-6963-6945</orcidid><orcidid>https://orcid.org/0000-0001-7083-3778</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-1135 |
ispartof | IEEE photonics technology letters, 2024-04, Vol.36 (8), p.1-1 |
issn | 1041-1135 1941-0174 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LPT_2024_3373479 |
source | IEEE Electronic Library (IEL) |
subjects | Absorption spectroscopy carrier lifetime Carrier recombination Devices Doping Impurities Microwave generation Microwave theory and techniques Microwaves Nitrogen Nitrogen doping 4H-SiC photoconductive microwave Photoconductivity photoelectric conversion Photoelectric effect Photoelectricity Radiative recombination response speed Silicon carbide |
title | Influence of Nitrogen doping in Vanadium-compensated 4H-SiC on transient photocurrent response for photoconductive microwave generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Nitrogen%20doping%20in%20Vanadium-compensated%204H-SiC%20on%20transient%20photocurrent%20response%20for%20photoconductive%20microwave%20generation&rft.jtitle=IEEE%20photonics%20technology%20letters&rft.au=Chu,%20Xu&rft.date=2024-04-15&rft.volume=36&rft.issue=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1041-1135&rft.eissn=1941-0174&rft.coden=IPTLEL&rft_id=info:doi/10.1109/LPT.2024.3373479&rft_dat=%3Cproquest_RIE%3E2969041265%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2969041265&rft_id=info:pmid/&rft_ieee_id=10459265&rfr_iscdi=true |