Influence of Nitrogen doping in Vanadium-compensated 4H-SiC on transient photocurrent response for photoconductive microwave generation

High-frequency microwave generation based on PCSS devices requires the fastest possible response speed. In this study, we successfully demonstrated controlled donor level doping in 4H-SiC PCSS devices to reduce the carrier recombination lifetime and enhance high-frequency microwave generation. PCSSs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics technology letters 2024-04, Vol.36 (8), p.1-1
Hauptverfasser: Chu, Xu, Meng, Jin, Wang, Haitao, Zhu, Danni, Yuan, Yuzhang, Huang, Liyang, Xiang, Zhongwu, Han, Jiangfeng, Deng, Bingfang, Cui, Yancheng, Zhang, Jiahao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 8
container_start_page 1
container_title IEEE photonics technology letters
container_volume 36
creator Chu, Xu
Meng, Jin
Wang, Haitao
Zhu, Danni
Yuan, Yuzhang
Huang, Liyang
Xiang, Zhongwu
Han, Jiangfeng
Deng, Bingfang
Cui, Yancheng
Zhang, Jiahao
description High-frequency microwave generation based on PCSS devices requires the fastest possible response speed. In this study, we successfully demonstrated controlled donor level doping in 4H-SiC PCSS devices to reduce the carrier recombination lifetime and enhance high-frequency microwave generation. PCSSs with three different doping of nitrogen concentrations were manufactured and compared. By femtosecond transient absorption spectroscopy (fs-TAS), we observed that the 4H-SiC PCSS devices doped with lower nitrogen concentrations exhibited significantly shorter carrier recombination lifetime and faster response speed, ranging from 137 ps to 118 ps. Furthermore, experiment results demonstrate that if nitrogen doping concentration was below 10 16 cm -3 , the PCSS devices could generate high-frequency microwave up to 10 GHz, with improved response speed and higher photoelectric efficiency. Consequently, by precisely controlling the nitrogen concentration, it is feasible to enhance the response frequency of photoconductive microwaves.
doi_str_mv 10.1109/LPT.2024.3373479
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LPT_2024_3373479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10459265</ieee_id><sourcerecordid>2969041265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-c288e265a2106cb23418748956cd4f6490121a5451fb255626905b393178dced3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQjBBIQOHOgYMlzileP5L4iCoelSpAonCNXGcDRtQOtgPiC_htXLUHLruz2tmZ1RTFGdApAFWXi8fllFEmppzXXNRqrzgCJaCkUIv9jGnGAFweFscxvlMKQnJxVPzOXf8xojNIfE_ubQr-FR3p_GDdK7GOvGinOzuuS-PXA7qoE3ZE3JVPdka8IyloFy26RIY3n7wZQ9gMAePgXUTS-7DbeNeNJtkvJGtrgv_WGWUrDDpZ706Kg15_RDzd9UnxfHO9nN2Vi4fb-exqURqmWMq1aZBVUjOglVkxLqCpRaNkZTrRV0JRYKClkNCvmJQVqxSVK6441E1nsOOT4mKrOwT_OWJM7bsfg8uWLVOZLCCrZxbdsvKjMQbs2yHYtQ4_LdB2E3eb4243cbe7uPPJ-fbEIuI_upBqo_gHFEt9Rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969041265</pqid></control><display><type>article</type><title>Influence of Nitrogen doping in Vanadium-compensated 4H-SiC on transient photocurrent response for photoconductive microwave generation</title><source>IEEE Electronic Library (IEL)</source><creator>Chu, Xu ; Meng, Jin ; Wang, Haitao ; Zhu, Danni ; Yuan, Yuzhang ; Huang, Liyang ; Xiang, Zhongwu ; Han, Jiangfeng ; Deng, Bingfang ; Cui, Yancheng ; Zhang, Jiahao</creator><creatorcontrib>Chu, Xu ; Meng, Jin ; Wang, Haitao ; Zhu, Danni ; Yuan, Yuzhang ; Huang, Liyang ; Xiang, Zhongwu ; Han, Jiangfeng ; Deng, Bingfang ; Cui, Yancheng ; Zhang, Jiahao</creatorcontrib><description>High-frequency microwave generation based on PCSS devices requires the fastest possible response speed. In this study, we successfully demonstrated controlled donor level doping in 4H-SiC PCSS devices to reduce the carrier recombination lifetime and enhance high-frequency microwave generation. PCSSs with three different doping of nitrogen concentrations were manufactured and compared. By femtosecond transient absorption spectroscopy (fs-TAS), we observed that the 4H-SiC PCSS devices doped with lower nitrogen concentrations exhibited significantly shorter carrier recombination lifetime and faster response speed, ranging from 137 ps to 118 ps. Furthermore, experiment results demonstrate that if nitrogen doping concentration was below 10 16 cm -3 , the PCSS devices could generate high-frequency microwave up to 10 GHz, with improved response speed and higher photoelectric efficiency. Consequently, by precisely controlling the nitrogen concentration, it is feasible to enhance the response frequency of photoconductive microwaves.</description><identifier>ISSN: 1041-1135</identifier><identifier>EISSN: 1941-0174</identifier><identifier>DOI: 10.1109/LPT.2024.3373479</identifier><identifier>CODEN: IPTLEL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Absorption spectroscopy ; carrier lifetime ; Carrier recombination ; Devices ; Doping ; Impurities ; Microwave generation ; Microwave theory and techniques ; Microwaves ; Nitrogen ; Nitrogen doping 4H-SiC ; photoconductive microwave ; Photoconductivity ; photoelectric conversion ; Photoelectric effect ; Photoelectricity ; Radiative recombination ; response speed ; Silicon carbide</subject><ispartof>IEEE photonics technology letters, 2024-04, Vol.36 (8), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-c288e265a2106cb23418748956cd4f6490121a5451fb255626905b393178dced3</citedby><cites>FETCH-LOGICAL-c292t-c288e265a2106cb23418748956cd4f6490121a5451fb255626905b393178dced3</cites><orcidid>0000-0001-6844-3711 ; 0000-0001-7483-0144 ; 0000-0003-3701-154X ; 0000-0003-2017-7893 ; 0000-0001-6531-2679 ; 0000-0001-6510-6103 ; 0000-0002-5507-079X ; 0000-0001-6088-7481 ; 0000-0003-4672-0567 ; 0000-0001-6963-6945 ; 0000-0001-7083-3778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10459265$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10459265$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chu, Xu</creatorcontrib><creatorcontrib>Meng, Jin</creatorcontrib><creatorcontrib>Wang, Haitao</creatorcontrib><creatorcontrib>Zhu, Danni</creatorcontrib><creatorcontrib>Yuan, Yuzhang</creatorcontrib><creatorcontrib>Huang, Liyang</creatorcontrib><creatorcontrib>Xiang, Zhongwu</creatorcontrib><creatorcontrib>Han, Jiangfeng</creatorcontrib><creatorcontrib>Deng, Bingfang</creatorcontrib><creatorcontrib>Cui, Yancheng</creatorcontrib><creatorcontrib>Zhang, Jiahao</creatorcontrib><title>Influence of Nitrogen doping in Vanadium-compensated 4H-SiC on transient photocurrent response for photoconductive microwave generation</title><title>IEEE photonics technology letters</title><addtitle>LPT</addtitle><description>High-frequency microwave generation based on PCSS devices requires the fastest possible response speed. In this study, we successfully demonstrated controlled donor level doping in 4H-SiC PCSS devices to reduce the carrier recombination lifetime and enhance high-frequency microwave generation. PCSSs with three different doping of nitrogen concentrations were manufactured and compared. By femtosecond transient absorption spectroscopy (fs-TAS), we observed that the 4H-SiC PCSS devices doped with lower nitrogen concentrations exhibited significantly shorter carrier recombination lifetime and faster response speed, ranging from 137 ps to 118 ps. Furthermore, experiment results demonstrate that if nitrogen doping concentration was below 10 16 cm -3 , the PCSS devices could generate high-frequency microwave up to 10 GHz, with improved response speed and higher photoelectric efficiency. Consequently, by precisely controlling the nitrogen concentration, it is feasible to enhance the response frequency of photoconductive microwaves.</description><subject>Absorption spectroscopy</subject><subject>carrier lifetime</subject><subject>Carrier recombination</subject><subject>Devices</subject><subject>Doping</subject><subject>Impurities</subject><subject>Microwave generation</subject><subject>Microwave theory and techniques</subject><subject>Microwaves</subject><subject>Nitrogen</subject><subject>Nitrogen doping 4H-SiC</subject><subject>photoconductive microwave</subject><subject>Photoconductivity</subject><subject>photoelectric conversion</subject><subject>Photoelectric effect</subject><subject>Photoelectricity</subject><subject>Radiative recombination</subject><subject>response speed</subject><subject>Silicon carbide</subject><issn>1041-1135</issn><issn>1941-0174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMtOwzAQjBBIQOHOgYMlzileP5L4iCoelSpAonCNXGcDRtQOtgPiC_htXLUHLruz2tmZ1RTFGdApAFWXi8fllFEmppzXXNRqrzgCJaCkUIv9jGnGAFweFscxvlMKQnJxVPzOXf8xojNIfE_ubQr-FR3p_GDdK7GOvGinOzuuS-PXA7qoE3ZE3JVPdka8IyloFy26RIY3n7wZQ9gMAePgXUTS-7DbeNeNJtkvJGtrgv_WGWUrDDpZ706Kg15_RDzd9UnxfHO9nN2Vi4fb-exqURqmWMq1aZBVUjOglVkxLqCpRaNkZTrRV0JRYKClkNCvmJQVqxSVK6441E1nsOOT4mKrOwT_OWJM7bsfg8uWLVOZLCCrZxbdsvKjMQbs2yHYtQ4_LdB2E3eb4243cbe7uPPJ-fbEIuI_upBqo_gHFEt9Rg</recordid><startdate>20240415</startdate><enddate>20240415</enddate><creator>Chu, Xu</creator><creator>Meng, Jin</creator><creator>Wang, Haitao</creator><creator>Zhu, Danni</creator><creator>Yuan, Yuzhang</creator><creator>Huang, Liyang</creator><creator>Xiang, Zhongwu</creator><creator>Han, Jiangfeng</creator><creator>Deng, Bingfang</creator><creator>Cui, Yancheng</creator><creator>Zhang, Jiahao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6844-3711</orcidid><orcidid>https://orcid.org/0000-0001-7483-0144</orcidid><orcidid>https://orcid.org/0000-0003-3701-154X</orcidid><orcidid>https://orcid.org/0000-0003-2017-7893</orcidid><orcidid>https://orcid.org/0000-0001-6531-2679</orcidid><orcidid>https://orcid.org/0000-0001-6510-6103</orcidid><orcidid>https://orcid.org/0000-0002-5507-079X</orcidid><orcidid>https://orcid.org/0000-0001-6088-7481</orcidid><orcidid>https://orcid.org/0000-0003-4672-0567</orcidid><orcidid>https://orcid.org/0000-0001-6963-6945</orcidid><orcidid>https://orcid.org/0000-0001-7083-3778</orcidid></search><sort><creationdate>20240415</creationdate><title>Influence of Nitrogen doping in Vanadium-compensated 4H-SiC on transient photocurrent response for photoconductive microwave generation</title><author>Chu, Xu ; Meng, Jin ; Wang, Haitao ; Zhu, Danni ; Yuan, Yuzhang ; Huang, Liyang ; Xiang, Zhongwu ; Han, Jiangfeng ; Deng, Bingfang ; Cui, Yancheng ; Zhang, Jiahao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-c288e265a2106cb23418748956cd4f6490121a5451fb255626905b393178dced3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectroscopy</topic><topic>carrier lifetime</topic><topic>Carrier recombination</topic><topic>Devices</topic><topic>Doping</topic><topic>Impurities</topic><topic>Microwave generation</topic><topic>Microwave theory and techniques</topic><topic>Microwaves</topic><topic>Nitrogen</topic><topic>Nitrogen doping 4H-SiC</topic><topic>photoconductive microwave</topic><topic>Photoconductivity</topic><topic>photoelectric conversion</topic><topic>Photoelectric effect</topic><topic>Photoelectricity</topic><topic>Radiative recombination</topic><topic>response speed</topic><topic>Silicon carbide</topic><toplevel>online_resources</toplevel><creatorcontrib>Chu, Xu</creatorcontrib><creatorcontrib>Meng, Jin</creatorcontrib><creatorcontrib>Wang, Haitao</creatorcontrib><creatorcontrib>Zhu, Danni</creatorcontrib><creatorcontrib>Yuan, Yuzhang</creatorcontrib><creatorcontrib>Huang, Liyang</creatorcontrib><creatorcontrib>Xiang, Zhongwu</creatorcontrib><creatorcontrib>Han, Jiangfeng</creatorcontrib><creatorcontrib>Deng, Bingfang</creatorcontrib><creatorcontrib>Cui, Yancheng</creatorcontrib><creatorcontrib>Zhang, Jiahao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE photonics technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chu, Xu</au><au>Meng, Jin</au><au>Wang, Haitao</au><au>Zhu, Danni</au><au>Yuan, Yuzhang</au><au>Huang, Liyang</au><au>Xiang, Zhongwu</au><au>Han, Jiangfeng</au><au>Deng, Bingfang</au><au>Cui, Yancheng</au><au>Zhang, Jiahao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Nitrogen doping in Vanadium-compensated 4H-SiC on transient photocurrent response for photoconductive microwave generation</atitle><jtitle>IEEE photonics technology letters</jtitle><stitle>LPT</stitle><date>2024-04-15</date><risdate>2024</risdate><volume>36</volume><issue>8</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1041-1135</issn><eissn>1941-0174</eissn><coden>IPTLEL</coden><abstract>High-frequency microwave generation based on PCSS devices requires the fastest possible response speed. In this study, we successfully demonstrated controlled donor level doping in 4H-SiC PCSS devices to reduce the carrier recombination lifetime and enhance high-frequency microwave generation. PCSSs with three different doping of nitrogen concentrations were manufactured and compared. By femtosecond transient absorption spectroscopy (fs-TAS), we observed that the 4H-SiC PCSS devices doped with lower nitrogen concentrations exhibited significantly shorter carrier recombination lifetime and faster response speed, ranging from 137 ps to 118 ps. Furthermore, experiment results demonstrate that if nitrogen doping concentration was below 10 16 cm -3 , the PCSS devices could generate high-frequency microwave up to 10 GHz, with improved response speed and higher photoelectric efficiency. Consequently, by precisely controlling the nitrogen concentration, it is feasible to enhance the response frequency of photoconductive microwaves.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LPT.2024.3373479</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6844-3711</orcidid><orcidid>https://orcid.org/0000-0001-7483-0144</orcidid><orcidid>https://orcid.org/0000-0003-3701-154X</orcidid><orcidid>https://orcid.org/0000-0003-2017-7893</orcidid><orcidid>https://orcid.org/0000-0001-6531-2679</orcidid><orcidid>https://orcid.org/0000-0001-6510-6103</orcidid><orcidid>https://orcid.org/0000-0002-5507-079X</orcidid><orcidid>https://orcid.org/0000-0001-6088-7481</orcidid><orcidid>https://orcid.org/0000-0003-4672-0567</orcidid><orcidid>https://orcid.org/0000-0001-6963-6945</orcidid><orcidid>https://orcid.org/0000-0001-7083-3778</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-1135
ispartof IEEE photonics technology letters, 2024-04, Vol.36 (8), p.1-1
issn 1041-1135
1941-0174
language eng
recordid cdi_crossref_primary_10_1109_LPT_2024_3373479
source IEEE Electronic Library (IEL)
subjects Absorption spectroscopy
carrier lifetime
Carrier recombination
Devices
Doping
Impurities
Microwave generation
Microwave theory and techniques
Microwaves
Nitrogen
Nitrogen doping 4H-SiC
photoconductive microwave
Photoconductivity
photoelectric conversion
Photoelectric effect
Photoelectricity
Radiative recombination
response speed
Silicon carbide
title Influence of Nitrogen doping in Vanadium-compensated 4H-SiC on transient photocurrent response for photoconductive microwave generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Nitrogen%20doping%20in%20Vanadium-compensated%204H-SiC%20on%20transient%20photocurrent%20response%20for%20photoconductive%20microwave%20generation&rft.jtitle=IEEE%20photonics%20technology%20letters&rft.au=Chu,%20Xu&rft.date=2024-04-15&rft.volume=36&rft.issue=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1041-1135&rft.eissn=1941-0174&rft.coden=IPTLEL&rft_id=info:doi/10.1109/LPT.2024.3373479&rft_dat=%3Cproquest_RIE%3E2969041265%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2969041265&rft_id=info:pmid/&rft_ieee_id=10459265&rfr_iscdi=true