Efficient LOD-BOR-FDTD Implementation Based on a Fundamental Scheme
An implicit locally 1-D body-of-revolution finite-difference time-domain method is efficiently implemented using a fundamental scheme. The formulation with dispersion control parameters is performed in convenient matrix-operator-free forms in the right-hand sides of resultant basic equations. The Hi...
Gespeichert in:
Veröffentlicht in: | IEEE photonics technology letters 2012-06, Vol.24 (11), p.957-959 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 959 |
---|---|
container_issue | 11 |
container_start_page | 957 |
container_title | IEEE photonics technology letters |
container_volume | 24 |
creator | Shibayama, Jun Oikawa, Takuto Yamauchi, Junji Nakano, Hisamatsu |
description | An implicit locally 1-D body-of-revolution finite-difference time-domain method is efficiently implemented using a fundamental scheme. The formulation with dispersion control parameters is performed in convenient matrix-operator-free forms in the right-hand sides of resultant basic equations. The Higdon absorbing boundary condition is also incorporated. Modification to the calculation procedure reduces memory requirements for auxiliary variables, compared with the original fundamental scheme. The usefulness is discussed through the analysis of a fiber Bragg grating. |
doi_str_mv | 10.1109/LPT.2012.2190502 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LPT_2012_2190502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6166853</ieee_id><sourcerecordid>10_1109_LPT_2012_2190502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-417e844db28a747a150dc71ccd90d310f93b80cc3950425e0f4a6a5a0e3a144a3</originalsourceid><addsrcrecordid>eNo9kE1Pg0AQhjdGE2v1buJl_wA4sx98HC202oQEo3gm02U3YoA2gAf_vVvbeJonM-87h4exe4QQEdLH4rUKBaAIBaagQVywBaYKA8BYXXoGz4hSX7ObafoCQKWlWrBs7VxrWjvMvCjzYFW-BZu8yvm2P3S292ua2_3AVzTZhnsgvvkeGvq7dPzdfPrQLbty1E327jyX7GOzrrKXoCift9lTERgRyTlQGNtEqWYnEopVTKihMTEa06TQSASXyl0CxshUgxLaglMUkSawklApkksGp79m3E_TaF19GNuexp8aoT5KqL2E-iihPkvwlYdTpbXW_scjjKJES_kLBYpWHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient LOD-BOR-FDTD Implementation Based on a Fundamental Scheme</title><source>IEEE Electronic Library (IEL)</source><creator>Shibayama, Jun ; Oikawa, Takuto ; Yamauchi, Junji ; Nakano, Hisamatsu</creator><creatorcontrib>Shibayama, Jun ; Oikawa, Takuto ; Yamauchi, Junji ; Nakano, Hisamatsu</creatorcontrib><description>An implicit locally 1-D body-of-revolution finite-difference time-domain method is efficiently implemented using a fundamental scheme. The formulation with dispersion control parameters is performed in convenient matrix-operator-free forms in the right-hand sides of resultant basic equations. The Higdon absorbing boundary condition is also incorporated. Modification to the calculation procedure reduces memory requirements for auxiliary variables, compared with the original fundamental scheme. The usefulness is discussed through the analysis of a fiber Bragg grating.</description><identifier>ISSN: 1041-1135</identifier><identifier>EISSN: 1941-0174</identifier><identifier>DOI: 10.1109/LPT.2012.2190502</identifier><identifier>CODEN: IPTLEL</identifier><language>eng</language><publisher>IEEE</publisher><subject>Body-of-revolution (BOR) ; Bragg gratings ; Dispersion ; Equations ; Finite difference methods ; locally 1-D finite-difference time-domain method (LOD-FDTD) ; Mathematical model ; rotationally symmetric geometry ; Time domain analysis ; unconditional stability ; Wireless communication</subject><ispartof>IEEE photonics technology letters, 2012-06, Vol.24 (11), p.957-959</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-417e844db28a747a150dc71ccd90d310f93b80cc3950425e0f4a6a5a0e3a144a3</citedby><cites>FETCH-LOGICAL-c263t-417e844db28a747a150dc71ccd90d310f93b80cc3950425e0f4a6a5a0e3a144a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6166853$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6166853$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shibayama, Jun</creatorcontrib><creatorcontrib>Oikawa, Takuto</creatorcontrib><creatorcontrib>Yamauchi, Junji</creatorcontrib><creatorcontrib>Nakano, Hisamatsu</creatorcontrib><title>Efficient LOD-BOR-FDTD Implementation Based on a Fundamental Scheme</title><title>IEEE photonics technology letters</title><addtitle>LPT</addtitle><description>An implicit locally 1-D body-of-revolution finite-difference time-domain method is efficiently implemented using a fundamental scheme. The formulation with dispersion control parameters is performed in convenient matrix-operator-free forms in the right-hand sides of resultant basic equations. The Higdon absorbing boundary condition is also incorporated. Modification to the calculation procedure reduces memory requirements for auxiliary variables, compared with the original fundamental scheme. The usefulness is discussed through the analysis of a fiber Bragg grating.</description><subject>Body-of-revolution (BOR)</subject><subject>Bragg gratings</subject><subject>Dispersion</subject><subject>Equations</subject><subject>Finite difference methods</subject><subject>locally 1-D finite-difference time-domain method (LOD-FDTD)</subject><subject>Mathematical model</subject><subject>rotationally symmetric geometry</subject><subject>Time domain analysis</subject><subject>unconditional stability</subject><subject>Wireless communication</subject><issn>1041-1135</issn><issn>1941-0174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Pg0AQhjdGE2v1buJl_wA4sx98HC202oQEo3gm02U3YoA2gAf_vVvbeJonM-87h4exe4QQEdLH4rUKBaAIBaagQVywBaYKA8BYXXoGz4hSX7ObafoCQKWlWrBs7VxrWjvMvCjzYFW-BZu8yvm2P3S292ua2_3AVzTZhnsgvvkeGvq7dPzdfPrQLbty1E327jyX7GOzrrKXoCift9lTERgRyTlQGNtEqWYnEopVTKihMTEa06TQSASXyl0CxshUgxLaglMUkSawklApkksGp79m3E_TaF19GNuexp8aoT5KqL2E-iihPkvwlYdTpbXW_scjjKJES_kLBYpWHA</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Shibayama, Jun</creator><creator>Oikawa, Takuto</creator><creator>Yamauchi, Junji</creator><creator>Nakano, Hisamatsu</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120601</creationdate><title>Efficient LOD-BOR-FDTD Implementation Based on a Fundamental Scheme</title><author>Shibayama, Jun ; Oikawa, Takuto ; Yamauchi, Junji ; Nakano, Hisamatsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-417e844db28a747a150dc71ccd90d310f93b80cc3950425e0f4a6a5a0e3a144a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Body-of-revolution (BOR)</topic><topic>Bragg gratings</topic><topic>Dispersion</topic><topic>Equations</topic><topic>Finite difference methods</topic><topic>locally 1-D finite-difference time-domain method (LOD-FDTD)</topic><topic>Mathematical model</topic><topic>rotationally symmetric geometry</topic><topic>Time domain analysis</topic><topic>unconditional stability</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Shibayama, Jun</creatorcontrib><creatorcontrib>Oikawa, Takuto</creatorcontrib><creatorcontrib>Yamauchi, Junji</creatorcontrib><creatorcontrib>Nakano, Hisamatsu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE photonics technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shibayama, Jun</au><au>Oikawa, Takuto</au><au>Yamauchi, Junji</au><au>Nakano, Hisamatsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient LOD-BOR-FDTD Implementation Based on a Fundamental Scheme</atitle><jtitle>IEEE photonics technology letters</jtitle><stitle>LPT</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>24</volume><issue>11</issue><spage>957</spage><epage>959</epage><pages>957-959</pages><issn>1041-1135</issn><eissn>1941-0174</eissn><coden>IPTLEL</coden><abstract>An implicit locally 1-D body-of-revolution finite-difference time-domain method is efficiently implemented using a fundamental scheme. The formulation with dispersion control parameters is performed in convenient matrix-operator-free forms in the right-hand sides of resultant basic equations. The Higdon absorbing boundary condition is also incorporated. Modification to the calculation procedure reduces memory requirements for auxiliary variables, compared with the original fundamental scheme. The usefulness is discussed through the analysis of a fiber Bragg grating.</abstract><pub>IEEE</pub><doi>10.1109/LPT.2012.2190502</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-1135 |
ispartof | IEEE photonics technology letters, 2012-06, Vol.24 (11), p.957-959 |
issn | 1041-1135 1941-0174 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LPT_2012_2190502 |
source | IEEE Electronic Library (IEL) |
subjects | Body-of-revolution (BOR) Bragg gratings Dispersion Equations Finite difference methods locally 1-D finite-difference time-domain method (LOD-FDTD) Mathematical model rotationally symmetric geometry Time domain analysis unconditional stability Wireless communication |
title | Efficient LOD-BOR-FDTD Implementation Based on a Fundamental Scheme |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A38%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20LOD-BOR-FDTD%20Implementation%20Based%20on%20a%20Fundamental%20Scheme&rft.jtitle=IEEE%20photonics%20technology%20letters&rft.au=Shibayama,%20Jun&rft.date=2012-06-01&rft.volume=24&rft.issue=11&rft.spage=957&rft.epage=959&rft.pages=957-959&rft.issn=1041-1135&rft.eissn=1941-0174&rft.coden=IPTLEL&rft_id=info:doi/10.1109/LPT.2012.2190502&rft_dat=%3Ccrossref_RIE%3E10_1109_LPT_2012_2190502%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6166853&rfr_iscdi=true |