Mobile Network Configuration Recommendation Using Deep Generative Graph Neural Network

There are vast number of configurable parameters in a Radio Access Telecom Network. A significant amount of these parameters is configured by Radio Node or cell based on their deployment setting. Traditional methods rely on domain knowledge for individual parameter configuration, often leading to su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE networking letters 2024-09, Vol.6 (3), p.179-182
Hauptverfasser: Piroti, Shirwan, Chawla, Ashima, Zanouda, Tahar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 182
container_issue 3
container_start_page 179
container_title IEEE networking letters
container_volume 6
creator Piroti, Shirwan
Chawla, Ashima
Zanouda, Tahar
description There are vast number of configurable parameters in a Radio Access Telecom Network. A significant amount of these parameters is configured by Radio Node or cell based on their deployment setting. Traditional methods rely on domain knowledge for individual parameter configuration, often leading to sub-optimal results. To improve this, a framework using a Deep Generative Graph Neural Network (GNN) is proposed. It encodes the network into a graph, extracts subgraphs for each RAN node, and employs a Siamese GNN (S-GNN) to learn embeddings. The framework recommends configuration parameters for a multitude of parameters and detects misconfigurations, handling both network expansion and existing cell reconfiguration. Tested on real-world data, the model surpasses baselines, demonstrating accuracy, generalizability, and robustness against concept drift.
doi_str_mv 10.1109/LNET.2024.3422482
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LNET_2024_3422482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10584078</ieee_id><sourcerecordid>3120655792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c912-d9cbf041517dad516c845df83cd3dd978dbb5035c9837936947e6a5ae97f6bb3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOOZ-gOBFwevOfDbJpcw5hTlBp7chTU5n59bUdFP897Z0wq7OOfC874EHoUuCx4RgfTNfTJdjiikfM04pV_QEDaiQWcqIyE6P9nM0apo1xphirqRiA_T-FPJyA8kCdj8hfiaTUBXlah_trgxV8gIubLdQ-f58a8pqldwB1MkMKuigb0hm0dYfbUEb2vz3XKCzwm4aGB3mEL3eT5eTh3T-PHuc3M5TpwlNvXZ5gTkRRHrrBcmc4sIXijnPvNdS-TwXmAmnFZOaZZpLyKywoGWR5Tkbouu-tY7haw_NzqzDPlbtQ8MIxZkQUtOWIj3lYmiaCIWpY7m18dcQbDp_pvNnOn_m4K_NXPWZEgCOeKE4br39AfEJbEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120655792</pqid></control><display><type>article</type><title>Mobile Network Configuration Recommendation Using Deep Generative Graph Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Piroti, Shirwan ; Chawla, Ashima ; Zanouda, Tahar</creator><creatorcontrib>Piroti, Shirwan ; Chawla, Ashima ; Zanouda, Tahar</creatorcontrib><description>There are vast number of configurable parameters in a Radio Access Telecom Network. A significant amount of these parameters is configured by Radio Node or cell based on their deployment setting. Traditional methods rely on domain knowledge for individual parameter configuration, often leading to sub-optimal results. To improve this, a framework using a Deep Generative Graph Neural Network (GNN) is proposed. It encodes the network into a graph, extracts subgraphs for each RAN node, and employs a Siamese GNN (S-GNN) to learn embeddings. The framework recommends configuration parameters for a multitude of parameters and detects misconfigurations, handling both network expansion and existing cell reconfiguration. Tested on real-world data, the model surpasses baselines, demonstrating accuracy, generalizability, and robustness against concept drift.</description><identifier>ISSN: 2576-3156</identifier><identifier>EISSN: 2576-3156</identifier><identifier>DOI: 10.1109/LNET.2024.3422482</identifier><identifier>CODEN: INLEBB</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Computer architecture ; Configurations ; Decoding ; graph neural network ; Graph neural networks ; Graph theory ; Long Term Evolution ; Parameters ; Reconfiguration ; siamese neural network ; Telecom network configuration management ; Training ; Vectors</subject><ispartof>IEEE networking letters, 2024-09, Vol.6 (3), p.179-182</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c912-d9cbf041517dad516c845df83cd3dd978dbb5035c9837936947e6a5ae97f6bb3</cites><orcidid>0009-0007-8954-2293 ; 0000-0001-5933-3107 ; 0009-0005-3646-600X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10584078$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10584078$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Piroti, Shirwan</creatorcontrib><creatorcontrib>Chawla, Ashima</creatorcontrib><creatorcontrib>Zanouda, Tahar</creatorcontrib><title>Mobile Network Configuration Recommendation Using Deep Generative Graph Neural Network</title><title>IEEE networking letters</title><addtitle>LNET</addtitle><description>There are vast number of configurable parameters in a Radio Access Telecom Network. A significant amount of these parameters is configured by Radio Node or cell based on their deployment setting. Traditional methods rely on domain knowledge for individual parameter configuration, often leading to sub-optimal results. To improve this, a framework using a Deep Generative Graph Neural Network (GNN) is proposed. It encodes the network into a graph, extracts subgraphs for each RAN node, and employs a Siamese GNN (S-GNN) to learn embeddings. The framework recommends configuration parameters for a multitude of parameters and detects misconfigurations, handling both network expansion and existing cell reconfiguration. Tested on real-world data, the model surpasses baselines, demonstrating accuracy, generalizability, and robustness against concept drift.</description><subject>Accuracy</subject><subject>Computer architecture</subject><subject>Configurations</subject><subject>Decoding</subject><subject>graph neural network</subject><subject>Graph neural networks</subject><subject>Graph theory</subject><subject>Long Term Evolution</subject><subject>Parameters</subject><subject>Reconfiguration</subject><subject>siamese neural network</subject><subject>Telecom network configuration management</subject><subject>Training</subject><subject>Vectors</subject><issn>2576-3156</issn><issn>2576-3156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOOZ-gOBFwevOfDbJpcw5hTlBp7chTU5n59bUdFP897Z0wq7OOfC874EHoUuCx4RgfTNfTJdjiikfM04pV_QEDaiQWcqIyE6P9nM0apo1xphirqRiA_T-FPJyA8kCdj8hfiaTUBXlah_trgxV8gIubLdQ-f58a8pqldwB1MkMKuigb0hm0dYfbUEb2vz3XKCzwm4aGB3mEL3eT5eTh3T-PHuc3M5TpwlNvXZ5gTkRRHrrBcmc4sIXijnPvNdS-TwXmAmnFZOaZZpLyKywoGWR5Tkbouu-tY7haw_NzqzDPlbtQ8MIxZkQUtOWIj3lYmiaCIWpY7m18dcQbDp_pvNnOn_m4K_NXPWZEgCOeKE4br39AfEJbEw</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Piroti, Shirwan</creator><creator>Chawla, Ashima</creator><creator>Zanouda, Tahar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0007-8954-2293</orcidid><orcidid>https://orcid.org/0000-0001-5933-3107</orcidid><orcidid>https://orcid.org/0009-0005-3646-600X</orcidid></search><sort><creationdate>202409</creationdate><title>Mobile Network Configuration Recommendation Using Deep Generative Graph Neural Network</title><author>Piroti, Shirwan ; Chawla, Ashima ; Zanouda, Tahar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c912-d9cbf041517dad516c845df83cd3dd978dbb5035c9837936947e6a5ae97f6bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Computer architecture</topic><topic>Configurations</topic><topic>Decoding</topic><topic>graph neural network</topic><topic>Graph neural networks</topic><topic>Graph theory</topic><topic>Long Term Evolution</topic><topic>Parameters</topic><topic>Reconfiguration</topic><topic>siamese neural network</topic><topic>Telecom network configuration management</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piroti, Shirwan</creatorcontrib><creatorcontrib>Chawla, Ashima</creatorcontrib><creatorcontrib>Zanouda, Tahar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE networking letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Piroti, Shirwan</au><au>Chawla, Ashima</au><au>Zanouda, Tahar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mobile Network Configuration Recommendation Using Deep Generative Graph Neural Network</atitle><jtitle>IEEE networking letters</jtitle><stitle>LNET</stitle><date>2024-09</date><risdate>2024</risdate><volume>6</volume><issue>3</issue><spage>179</spage><epage>182</epage><pages>179-182</pages><issn>2576-3156</issn><eissn>2576-3156</eissn><coden>INLEBB</coden><abstract>There are vast number of configurable parameters in a Radio Access Telecom Network. A significant amount of these parameters is configured by Radio Node or cell based on their deployment setting. Traditional methods rely on domain knowledge for individual parameter configuration, often leading to sub-optimal results. To improve this, a framework using a Deep Generative Graph Neural Network (GNN) is proposed. It encodes the network into a graph, extracts subgraphs for each RAN node, and employs a Siamese GNN (S-GNN) to learn embeddings. The framework recommends configuration parameters for a multitude of parameters and detects misconfigurations, handling both network expansion and existing cell reconfiguration. Tested on real-world data, the model surpasses baselines, demonstrating accuracy, generalizability, and robustness against concept drift.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LNET.2024.3422482</doi><tpages>4</tpages><orcidid>https://orcid.org/0009-0007-8954-2293</orcidid><orcidid>https://orcid.org/0000-0001-5933-3107</orcidid><orcidid>https://orcid.org/0009-0005-3646-600X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2576-3156
ispartof IEEE networking letters, 2024-09, Vol.6 (3), p.179-182
issn 2576-3156
2576-3156
language eng
recordid cdi_crossref_primary_10_1109_LNET_2024_3422482
source IEEE Electronic Library (IEL)
subjects Accuracy
Computer architecture
Configurations
Decoding
graph neural network
Graph neural networks
Graph theory
Long Term Evolution
Parameters
Reconfiguration
siamese neural network
Telecom network configuration management
Training
Vectors
title Mobile Network Configuration Recommendation Using Deep Generative Graph Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mobile%20Network%20Configuration%20Recommendation%20Using%20Deep%20Generative%20Graph%20Neural%20Network&rft.jtitle=IEEE%20networking%20letters&rft.au=Piroti,%20Shirwan&rft.date=2024-09&rft.volume=6&rft.issue=3&rft.spage=179&rft.epage=182&rft.pages=179-182&rft.issn=2576-3156&rft.eissn=2576-3156&rft.coden=INLEBB&rft_id=info:doi/10.1109/LNET.2024.3422482&rft_dat=%3Cproquest_RIE%3E3120655792%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120655792&rft_id=info:pmid/&rft_ieee_id=10584078&rfr_iscdi=true