Miniaturized SIW Cavity Resonator and Its Application in Filter Design
The contribution of this letter is to propose an evanescent-mode ultraminiaturized substrate integrated waveguide (SIW) cavity resonator and its application in bandpass filter (BPF) design. The proposed compact SIW cavity is composed of two dielectric substrates with three metal layers. The top and...
Gespeichert in:
Veröffentlicht in: | IEEE microwave and wireless components letters 2018-08, Vol.28 (8), p.651-653 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 653 |
---|---|
container_issue | 8 |
container_start_page | 651 |
container_title | IEEE microwave and wireless components letters |
container_volume | 28 |
creator | Ho, Min-Hua Li, Jen-Chih Chen, Yi-Cheng |
description | The contribution of this letter is to propose an evanescent-mode ultraminiaturized substrate integrated waveguide (SIW) cavity resonator and its application in bandpass filter (BPF) design. The proposed compact SIW cavity is composed of two dielectric substrates with three metal layers. The top and bottom metal layers form the cavity's broadside walls, and the middle one is a circular patch that shorts to the bottom wall by a ring fence of vias (or a centered single via). This circular patch together with the ring-fence vias (or single via) provides cavity resonator a large loading capacitance to allow a dramatic frequency downshift. Two experimental four-pole BPFs are built to validate the circuit design. The achieved frequency downshift of the proposed SIW cavity, compared with that of its conventional SIW cavity counterpart, is 72.5% (82.3%) for the via-ring fence (single via) case. Not only is the associated area miniaturization factor (MF) comparable with the highest record in the literature, but also the BPFs implemented here are structurally simpler and exhibit a much wider relative upper stopband bandwidth than that of the SIW BPF with a record of high MF. |
doi_str_mv | 10.1109/LMWC.2018.2845101 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LMWC_2018_2845101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8395154</ieee_id><sourcerecordid>2117130687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-4b10be2d8b0eba5a8a37d44708c563ca472fa831d16e4a1c8767f5c07c0bb1b63</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Z0yRNeinV6WBD8INdhjRNJWOmNcmE-ett2fDqnIvnfQ_nQegayAyAlHfL1bqa5QTkLJeMA4ETNAHOZQaiYKfjTiEDSspzdBHjhhBgksEEzVfOO512wf3aBr8t1rjSPy7t8auNndepC1j7Bi9SxPd9v3VGJ9d57Dyeu22yAT_Y6D79JTpr9Tbaq-Ocoo_543v1nC1fnhbV_TIzlJcpYzWQ2uaNrImtNddSU9EwJog0vKBGM5G3WlJooLBMg5GiEC03RBhS11AXdIpuD7196L53Nia16XbBDydVDiCGBwspBgoOlAldjMG2qg_uS4e9AqJGXWrUpUZd6qhryNwcMs5a-89LWnLgjP4B6ABlYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117130687</pqid></control><display><type>article</type><title>Miniaturized SIW Cavity Resonator and Its Application in Filter Design</title><source>IEEE Electronic Library (IEL)</source><creator>Ho, Min-Hua ; Li, Jen-Chih ; Chen, Yi-Cheng</creator><creatorcontrib>Ho, Min-Hua ; Li, Jen-Chih ; Chen, Yi-Cheng</creatorcontrib><description>The contribution of this letter is to propose an evanescent-mode ultraminiaturized substrate integrated waveguide (SIW) cavity resonator and its application in bandpass filter (BPF) design. The proposed compact SIW cavity is composed of two dielectric substrates with three metal layers. The top and bottom metal layers form the cavity's broadside walls, and the middle one is a circular patch that shorts to the bottom wall by a ring fence of vias (or a centered single via). This circular patch together with the ring-fence vias (or single via) provides cavity resonator a large loading capacitance to allow a dramatic frequency downshift. Two experimental four-pole BPFs are built to validate the circuit design. The achieved frequency downshift of the proposed SIW cavity, compared with that of its conventional SIW cavity counterpart, is 72.5% (82.3%) for the via-ring fence (single via) case. Not only is the associated area miniaturization factor (MF) comparable with the highest record in the literature, but also the BPFs implemented here are structurally simpler and exhibit a much wider relative upper stopband bandwidth than that of the SIW BPF with a record of high MF.</description><identifier>ISSN: 1531-1309</identifier><identifier>ISSN: 2771-957X</identifier><identifier>EISSN: 1558-1764</identifier><identifier>EISSN: 2771-9588</identifier><identifier>DOI: 10.1109/LMWC.2018.2845101</identifier><identifier>CODEN: IMWCBJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bandpass filter (BPF) ; Bandpass filters ; Cavity resonators ; Circuit design ; evanescent mode ; Filter design (mathematics) ; Frequency measurement ; Loss measurement ; Miniaturization ; Passband ; Resonant frequency ; substrate integrated waveguide (SIW) ; Substrate integrated waveguides ; Substrates</subject><ispartof>IEEE microwave and wireless components letters, 2018-08, Vol.28 (8), p.651-653</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-4b10be2d8b0eba5a8a37d44708c563ca472fa831d16e4a1c8767f5c07c0bb1b63</citedby><cites>FETCH-LOGICAL-c359t-4b10be2d8b0eba5a8a37d44708c563ca472fa831d16e4a1c8767f5c07c0bb1b63</cites><orcidid>0000-0001-9112-0187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8395154$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8395154$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ho, Min-Hua</creatorcontrib><creatorcontrib>Li, Jen-Chih</creatorcontrib><creatorcontrib>Chen, Yi-Cheng</creatorcontrib><title>Miniaturized SIW Cavity Resonator and Its Application in Filter Design</title><title>IEEE microwave and wireless components letters</title><addtitle>LMWC</addtitle><description>The contribution of this letter is to propose an evanescent-mode ultraminiaturized substrate integrated waveguide (SIW) cavity resonator and its application in bandpass filter (BPF) design. The proposed compact SIW cavity is composed of two dielectric substrates with three metal layers. The top and bottom metal layers form the cavity's broadside walls, and the middle one is a circular patch that shorts to the bottom wall by a ring fence of vias (or a centered single via). This circular patch together with the ring-fence vias (or single via) provides cavity resonator a large loading capacitance to allow a dramatic frequency downshift. Two experimental four-pole BPFs are built to validate the circuit design. The achieved frequency downshift of the proposed SIW cavity, compared with that of its conventional SIW cavity counterpart, is 72.5% (82.3%) for the via-ring fence (single via) case. Not only is the associated area miniaturization factor (MF) comparable with the highest record in the literature, but also the BPFs implemented here are structurally simpler and exhibit a much wider relative upper stopband bandwidth than that of the SIW BPF with a record of high MF.</description><subject>Bandpass filter (BPF)</subject><subject>Bandpass filters</subject><subject>Cavity resonators</subject><subject>Circuit design</subject><subject>evanescent mode</subject><subject>Filter design (mathematics)</subject><subject>Frequency measurement</subject><subject>Loss measurement</subject><subject>Miniaturization</subject><subject>Passband</subject><subject>Resonant frequency</subject><subject>substrate integrated waveguide (SIW)</subject><subject>Substrate integrated waveguides</subject><subject>Substrates</subject><issn>1531-1309</issn><issn>2771-957X</issn><issn>1558-1764</issn><issn>2771-9588</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Z0yRNeinV6WBD8INdhjRNJWOmNcmE-ett2fDqnIvnfQ_nQegayAyAlHfL1bqa5QTkLJeMA4ETNAHOZQaiYKfjTiEDSspzdBHjhhBgksEEzVfOO512wf3aBr8t1rjSPy7t8auNndepC1j7Bi9SxPd9v3VGJ9d57Dyeu22yAT_Y6D79JTpr9Tbaq-Ocoo_543v1nC1fnhbV_TIzlJcpYzWQ2uaNrImtNddSU9EwJog0vKBGM5G3WlJooLBMg5GiEC03RBhS11AXdIpuD7196L53Nia16XbBDydVDiCGBwspBgoOlAldjMG2qg_uS4e9AqJGXWrUpUZd6qhryNwcMs5a-89LWnLgjP4B6ABlYQ</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Ho, Min-Hua</creator><creator>Li, Jen-Chih</creator><creator>Chen, Yi-Cheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9112-0187</orcidid></search><sort><creationdate>20180801</creationdate><title>Miniaturized SIW Cavity Resonator and Its Application in Filter Design</title><author>Ho, Min-Hua ; Li, Jen-Chih ; Chen, Yi-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-4b10be2d8b0eba5a8a37d44708c563ca472fa831d16e4a1c8767f5c07c0bb1b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bandpass filter (BPF)</topic><topic>Bandpass filters</topic><topic>Cavity resonators</topic><topic>Circuit design</topic><topic>evanescent mode</topic><topic>Filter design (mathematics)</topic><topic>Frequency measurement</topic><topic>Loss measurement</topic><topic>Miniaturization</topic><topic>Passband</topic><topic>Resonant frequency</topic><topic>substrate integrated waveguide (SIW)</topic><topic>Substrate integrated waveguides</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Min-Hua</creatorcontrib><creatorcontrib>Li, Jen-Chih</creatorcontrib><creatorcontrib>Chen, Yi-Cheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE microwave and wireless components letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ho, Min-Hua</au><au>Li, Jen-Chih</au><au>Chen, Yi-Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Miniaturized SIW Cavity Resonator and Its Application in Filter Design</atitle><jtitle>IEEE microwave and wireless components letters</jtitle><stitle>LMWC</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>28</volume><issue>8</issue><spage>651</spage><epage>653</epage><pages>651-653</pages><issn>1531-1309</issn><issn>2771-957X</issn><eissn>1558-1764</eissn><eissn>2771-9588</eissn><coden>IMWCBJ</coden><abstract>The contribution of this letter is to propose an evanescent-mode ultraminiaturized substrate integrated waveguide (SIW) cavity resonator and its application in bandpass filter (BPF) design. The proposed compact SIW cavity is composed of two dielectric substrates with three metal layers. The top and bottom metal layers form the cavity's broadside walls, and the middle one is a circular patch that shorts to the bottom wall by a ring fence of vias (or a centered single via). This circular patch together with the ring-fence vias (or single via) provides cavity resonator a large loading capacitance to allow a dramatic frequency downshift. Two experimental four-pole BPFs are built to validate the circuit design. The achieved frequency downshift of the proposed SIW cavity, compared with that of its conventional SIW cavity counterpart, is 72.5% (82.3%) for the via-ring fence (single via) case. Not only is the associated area miniaturization factor (MF) comparable with the highest record in the literature, but also the BPFs implemented here are structurally simpler and exhibit a much wider relative upper stopband bandwidth than that of the SIW BPF with a record of high MF.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LMWC.2018.2845101</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0001-9112-0187</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1531-1309 |
ispartof | IEEE microwave and wireless components letters, 2018-08, Vol.28 (8), p.651-653 |
issn | 1531-1309 2771-957X 1558-1764 2771-9588 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LMWC_2018_2845101 |
source | IEEE Electronic Library (IEL) |
subjects | Bandpass filter (BPF) Bandpass filters Cavity resonators Circuit design evanescent mode Filter design (mathematics) Frequency measurement Loss measurement Miniaturization Passband Resonant frequency substrate integrated waveguide (SIW) Substrate integrated waveguides Substrates |
title | Miniaturized SIW Cavity Resonator and Its Application in Filter Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Miniaturized%20SIW%20Cavity%20Resonator%20and%20Its%20Application%20in%20Filter%20Design&rft.jtitle=IEEE%20microwave%20and%20wireless%20components%20letters&rft.au=Ho,%20Min-Hua&rft.date=2018-08-01&rft.volume=28&rft.issue=8&rft.spage=651&rft.epage=653&rft.pages=651-653&rft.issn=1531-1309&rft.eissn=1558-1764&rft.coden=IMWCBJ&rft_id=info:doi/10.1109/LMWC.2018.2845101&rft_dat=%3Cproquest_RIE%3E2117130687%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117130687&rft_id=info:pmid/&rft_ieee_id=8395154&rfr_iscdi=true |