Magnetic Structural Analysis of Nanocrystalline Soft Magnets by Small-Angle Neutron Scattering

Nanocrystalline soft magnets have attracted significant attention for their improvement of energy conversion devices. It has been considered that the partial nanocrystallization of amorphous structures is a key to macroscopic magnetic softness. However, the mechanism has not been clarified because o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE magnetics letters 2023, Vol.14, p.1-5
Hauptverfasser: Mamiya, Hiroaki, Oba, Yojiro, Hiroi, Kosuke, Miyatake, Takayuki, Gautam, Ravi, Sepehri-Amin, Hossein, Ohkubo, Tadakatsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE magnetics letters
container_volume 14
creator Mamiya, Hiroaki
Oba, Yojiro
Hiroi, Kosuke
Miyatake, Takayuki
Gautam, Ravi
Sepehri-Amin, Hossein
Ohkubo, Tadakatsu
description Nanocrystalline soft magnets have attracted significant attention for their improvement of energy conversion devices. It has been considered that the partial nanocrystallization of amorphous structures is a key to macroscopic magnetic softness. However, the mechanism has not been clarified because of inadequate knowledge of the magnetic nanostructures connecting microscopic crystalline structures and macroscopic magnetic properties. Here, we performed small-angle neutron scattering (SANS) for Fe 85 Si 2 B 8 P 4 Cu 1 alloy ribbons (NANOMETs). Rapidly quenched ribbons were annealed at 375 °C and 400 °C for 5 min. The X-ray diffraction pattern for the as-quenched ribbons did not exhibit peaks. Therefore, their atomic structure can be considered amorphous. Oppositely, evident α-iron peaks were observed for the ribbons annealed at 375 °C and 400 °C. The nuclear scattering contribution in SANS indicates that the precipitations were formed with sizes in the nanoscale. The magnetic scattering contribution in SANS for the as-quenched ribbon, whose intensity decreased with an increase in the scattering vector q in proportion to q −4 , disappeared when magnetic fields were applied. This behavior is consistent with the conventional magnetic domain picture. Oppositely, the reduction rates of the magnetic scattering contribution for q were nonmonotonous for the nanocrystallized ribbons. Furthermore, strong magnetic scattering was observed in the directions inclined to the magnetic field. This feature is similar to that reported for Fe-(Nb, Zr)-B alloy ribbons (NANOPERMs). The knowledge on the magnetic nanostructures characterized by the unusual angular dependence of magnetic scattering would be helpful to considering the relationship between partially nanocrystallized structure and macroscopic soft magnetic properties.
doi_str_mv 10.1109/LMAG.2023.3242108
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LMAG_2023_3242108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10036365</ieee_id><sourcerecordid>2785446967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-c6e143be3c1d06b520dbc49b8b25b9014be93e73ce1b2f9fce63b37ba1b2f4733</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsNT-AMHDgufU_crHHkPRKrT1EAVPLrvbSUlJk7q7OeTfm5AizmVmmPd9YR6E7ilZUkrk02abr5eMML7kTDBKsis0o1LIiJMsu_6b069btPD-SIbinLKYzND3Vh8aCJXFRXCdDZ3TNc4bXfe-8rgt8U43rXW9D7quqwZw0ZYBTyaPTY-L03CI8uZQA95BF1zb4MLqEMBVzeEO3ZS69rC49Dn6fHn-WL1Gm_f12yrfRJZJESKbABXcALd0TxITM7I3VkiTGRYbSagwIDmk3AI1rJSlhYQbnho9riLlfI4ep9yza3868EEd284Nb3jF0iwWIpFJOqjopLKu9d5Bqc6uOmnXK0rUSFKNJNVIUl1IDp6HyVMBwD894QlPYv4LO15wTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785446967</pqid></control><display><type>article</type><title>Magnetic Structural Analysis of Nanocrystalline Soft Magnets by Small-Angle Neutron Scattering</title><source>IEEE Electronic Library (IEL)</source><creator>Mamiya, Hiroaki ; Oba, Yojiro ; Hiroi, Kosuke ; Miyatake, Takayuki ; Gautam, Ravi ; Sepehri-Amin, Hossein ; Ohkubo, Tadakatsu</creator><creatorcontrib>Mamiya, Hiroaki ; Oba, Yojiro ; Hiroi, Kosuke ; Miyatake, Takayuki ; Gautam, Ravi ; Sepehri-Amin, Hossein ; Ohkubo, Tadakatsu</creatorcontrib><description>Nanocrystalline soft magnets have attracted significant attention for their improvement of energy conversion devices. It has been considered that the partial nanocrystallization of amorphous structures is a key to macroscopic magnetic softness. However, the mechanism has not been clarified because of inadequate knowledge of the magnetic nanostructures connecting microscopic crystalline structures and macroscopic magnetic properties. Here, we performed small-angle neutron scattering (SANS) for Fe 85 Si 2 B 8 P 4 Cu 1 alloy ribbons (NANOMETs). Rapidly quenched ribbons were annealed at 375 °C and 400 °C for 5 min. The X-ray diffraction pattern for the as-quenched ribbons did not exhibit peaks. Therefore, their atomic structure can be considered amorphous. Oppositely, evident α-iron peaks were observed for the ribbons annealed at 375 °C and 400 °C. The nuclear scattering contribution in SANS indicates that the precipitations were formed with sizes in the nanoscale. The magnetic scattering contribution in SANS for the as-quenched ribbon, whose intensity decreased with an increase in the scattering vector q in proportion to q −4 , disappeared when magnetic fields were applied. This behavior is consistent with the conventional magnetic domain picture. Oppositely, the reduction rates of the magnetic scattering contribution for q were nonmonotonous for the nanocrystallized ribbons. Furthermore, strong magnetic scattering was observed in the directions inclined to the magnetic field. This feature is similar to that reported for Fe-(Nb, Zr)-B alloy ribbons (NANOPERMs). The knowledge on the magnetic nanostructures characterized by the unusual angular dependence of magnetic scattering would be helpful to considering the relationship between partially nanocrystallized structure and macroscopic soft magnetic properties.</description><identifier>ISSN: 1949-307X</identifier><identifier>EISSN: 1949-3088</identifier><identifier>DOI: 10.1109/LMAG.2023.3242108</identifier><identifier>CODEN: IMLEA3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Alpha iron ; Amorphous magnetic materials ; Amorphous structure ; Annealing ; Atomic structure ; Diffraction patterns ; Energy conversion ; Magnetic anisotropy ; Magnetic domains ; Magnetic fields ; Magnetic properties ; Magnets ; nanocrystalline structure ; Nanocrystals ; Nanomagnetics ; nanomagnetism ; Nanoscale devices ; Nanostructure ; Nanostructures ; Neutron scattering ; Neutrons ; Niobium ; Nuclear scattering ; Perpendicular magnetic anisotropy ; Rapid quenching (metallurgy) ; Ribbons ; Saturation magnetization ; Scattering ; small-angle scattering ; Soft magnetic materials ; Softness ; Structural analysis ; Wave dispersion ; Zirconium</subject><ispartof>IEEE magnetics letters, 2023, Vol.14, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-c6e143be3c1d06b520dbc49b8b25b9014be93e73ce1b2f9fce63b37ba1b2f4733</citedby><cites>FETCH-LOGICAL-c294t-c6e143be3c1d06b520dbc49b8b25b9014be93e73ce1b2f9fce63b37ba1b2f4733</cites><orcidid>0000-0002-7840-3008 ; 0000-0003-3548-1951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10036365$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10036365$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mamiya, Hiroaki</creatorcontrib><creatorcontrib>Oba, Yojiro</creatorcontrib><creatorcontrib>Hiroi, Kosuke</creatorcontrib><creatorcontrib>Miyatake, Takayuki</creatorcontrib><creatorcontrib>Gautam, Ravi</creatorcontrib><creatorcontrib>Sepehri-Amin, Hossein</creatorcontrib><creatorcontrib>Ohkubo, Tadakatsu</creatorcontrib><title>Magnetic Structural Analysis of Nanocrystalline Soft Magnets by Small-Angle Neutron Scattering</title><title>IEEE magnetics letters</title><addtitle>LMAG</addtitle><description>Nanocrystalline soft magnets have attracted significant attention for their improvement of energy conversion devices. It has been considered that the partial nanocrystallization of amorphous structures is a key to macroscopic magnetic softness. However, the mechanism has not been clarified because of inadequate knowledge of the magnetic nanostructures connecting microscopic crystalline structures and macroscopic magnetic properties. Here, we performed small-angle neutron scattering (SANS) for Fe 85 Si 2 B 8 P 4 Cu 1 alloy ribbons (NANOMETs). Rapidly quenched ribbons were annealed at 375 °C and 400 °C for 5 min. The X-ray diffraction pattern for the as-quenched ribbons did not exhibit peaks. Therefore, their atomic structure can be considered amorphous. Oppositely, evident α-iron peaks were observed for the ribbons annealed at 375 °C and 400 °C. The nuclear scattering contribution in SANS indicates that the precipitations were formed with sizes in the nanoscale. The magnetic scattering contribution in SANS for the as-quenched ribbon, whose intensity decreased with an increase in the scattering vector q in proportion to q −4 , disappeared when magnetic fields were applied. This behavior is consistent with the conventional magnetic domain picture. Oppositely, the reduction rates of the magnetic scattering contribution for q were nonmonotonous for the nanocrystallized ribbons. Furthermore, strong magnetic scattering was observed in the directions inclined to the magnetic field. This feature is similar to that reported for Fe-(Nb, Zr)-B alloy ribbons (NANOPERMs). The knowledge on the magnetic nanostructures characterized by the unusual angular dependence of magnetic scattering would be helpful to considering the relationship between partially nanocrystallized structure and macroscopic soft magnetic properties.</description><subject>Alpha iron</subject><subject>Amorphous magnetic materials</subject><subject>Amorphous structure</subject><subject>Annealing</subject><subject>Atomic structure</subject><subject>Diffraction patterns</subject><subject>Energy conversion</subject><subject>Magnetic anisotropy</subject><subject>Magnetic domains</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnets</subject><subject>nanocrystalline structure</subject><subject>Nanocrystals</subject><subject>Nanomagnetics</subject><subject>nanomagnetism</subject><subject>Nanoscale devices</subject><subject>Nanostructure</subject><subject>Nanostructures</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Niobium</subject><subject>Nuclear scattering</subject><subject>Perpendicular magnetic anisotropy</subject><subject>Rapid quenching (metallurgy)</subject><subject>Ribbons</subject><subject>Saturation magnetization</subject><subject>Scattering</subject><subject>small-angle scattering</subject><subject>Soft magnetic materials</subject><subject>Softness</subject><subject>Structural analysis</subject><subject>Wave dispersion</subject><subject>Zirconium</subject><issn>1949-307X</issn><issn>1949-3088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsNT-AMHDgufU_crHHkPRKrT1EAVPLrvbSUlJk7q7OeTfm5AizmVmmPd9YR6E7ilZUkrk02abr5eMML7kTDBKsis0o1LIiJMsu_6b069btPD-SIbinLKYzND3Vh8aCJXFRXCdDZ3TNc4bXfe-8rgt8U43rXW9D7quqwZw0ZYBTyaPTY-L03CI8uZQA95BF1zb4MLqEMBVzeEO3ZS69rC49Dn6fHn-WL1Gm_f12yrfRJZJESKbABXcALd0TxITM7I3VkiTGRYbSagwIDmk3AI1rJSlhYQbnho9riLlfI4ep9yza3868EEd284Nb3jF0iwWIpFJOqjopLKu9d5Bqc6uOmnXK0rUSFKNJNVIUl1IDp6HyVMBwD894QlPYv4LO15wTg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Mamiya, Hiroaki</creator><creator>Oba, Yojiro</creator><creator>Hiroi, Kosuke</creator><creator>Miyatake, Takayuki</creator><creator>Gautam, Ravi</creator><creator>Sepehri-Amin, Hossein</creator><creator>Ohkubo, Tadakatsu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7840-3008</orcidid><orcidid>https://orcid.org/0000-0003-3548-1951</orcidid></search><sort><creationdate>2023</creationdate><title>Magnetic Structural Analysis of Nanocrystalline Soft Magnets by Small-Angle Neutron Scattering</title><author>Mamiya, Hiroaki ; Oba, Yojiro ; Hiroi, Kosuke ; Miyatake, Takayuki ; Gautam, Ravi ; Sepehri-Amin, Hossein ; Ohkubo, Tadakatsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-c6e143be3c1d06b520dbc49b8b25b9014be93e73ce1b2f9fce63b37ba1b2f4733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alpha iron</topic><topic>Amorphous magnetic materials</topic><topic>Amorphous structure</topic><topic>Annealing</topic><topic>Atomic structure</topic><topic>Diffraction patterns</topic><topic>Energy conversion</topic><topic>Magnetic anisotropy</topic><topic>Magnetic domains</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnets</topic><topic>nanocrystalline structure</topic><topic>Nanocrystals</topic><topic>Nanomagnetics</topic><topic>nanomagnetism</topic><topic>Nanoscale devices</topic><topic>Nanostructure</topic><topic>Nanostructures</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Niobium</topic><topic>Nuclear scattering</topic><topic>Perpendicular magnetic anisotropy</topic><topic>Rapid quenching (metallurgy)</topic><topic>Ribbons</topic><topic>Saturation magnetization</topic><topic>Scattering</topic><topic>small-angle scattering</topic><topic>Soft magnetic materials</topic><topic>Softness</topic><topic>Structural analysis</topic><topic>Wave dispersion</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mamiya, Hiroaki</creatorcontrib><creatorcontrib>Oba, Yojiro</creatorcontrib><creatorcontrib>Hiroi, Kosuke</creatorcontrib><creatorcontrib>Miyatake, Takayuki</creatorcontrib><creatorcontrib>Gautam, Ravi</creatorcontrib><creatorcontrib>Sepehri-Amin, Hossein</creatorcontrib><creatorcontrib>Ohkubo, Tadakatsu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE magnetics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mamiya, Hiroaki</au><au>Oba, Yojiro</au><au>Hiroi, Kosuke</au><au>Miyatake, Takayuki</au><au>Gautam, Ravi</au><au>Sepehri-Amin, Hossein</au><au>Ohkubo, Tadakatsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Structural Analysis of Nanocrystalline Soft Magnets by Small-Angle Neutron Scattering</atitle><jtitle>IEEE magnetics letters</jtitle><stitle>LMAG</stitle><date>2023</date><risdate>2023</risdate><volume>14</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1949-307X</issn><eissn>1949-3088</eissn><coden>IMLEA3</coden><abstract>Nanocrystalline soft magnets have attracted significant attention for their improvement of energy conversion devices. It has been considered that the partial nanocrystallization of amorphous structures is a key to macroscopic magnetic softness. However, the mechanism has not been clarified because of inadequate knowledge of the magnetic nanostructures connecting microscopic crystalline structures and macroscopic magnetic properties. Here, we performed small-angle neutron scattering (SANS) for Fe 85 Si 2 B 8 P 4 Cu 1 alloy ribbons (NANOMETs). Rapidly quenched ribbons were annealed at 375 °C and 400 °C for 5 min. The X-ray diffraction pattern for the as-quenched ribbons did not exhibit peaks. Therefore, their atomic structure can be considered amorphous. Oppositely, evident α-iron peaks were observed for the ribbons annealed at 375 °C and 400 °C. The nuclear scattering contribution in SANS indicates that the precipitations were formed with sizes in the nanoscale. The magnetic scattering contribution in SANS for the as-quenched ribbon, whose intensity decreased with an increase in the scattering vector q in proportion to q −4 , disappeared when magnetic fields were applied. This behavior is consistent with the conventional magnetic domain picture. Oppositely, the reduction rates of the magnetic scattering contribution for q were nonmonotonous for the nanocrystallized ribbons. Furthermore, strong magnetic scattering was observed in the directions inclined to the magnetic field. This feature is similar to that reported for Fe-(Nb, Zr)-B alloy ribbons (NANOPERMs). The knowledge on the magnetic nanostructures characterized by the unusual angular dependence of magnetic scattering would be helpful to considering the relationship between partially nanocrystallized structure and macroscopic soft magnetic properties.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LMAG.2023.3242108</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7840-3008</orcidid><orcidid>https://orcid.org/0000-0003-3548-1951</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-307X
ispartof IEEE magnetics letters, 2023, Vol.14, p.1-5
issn 1949-307X
1949-3088
language eng
recordid cdi_crossref_primary_10_1109_LMAG_2023_3242108
source IEEE Electronic Library (IEL)
subjects Alpha iron
Amorphous magnetic materials
Amorphous structure
Annealing
Atomic structure
Diffraction patterns
Energy conversion
Magnetic anisotropy
Magnetic domains
Magnetic fields
Magnetic properties
Magnets
nanocrystalline structure
Nanocrystals
Nanomagnetics
nanomagnetism
Nanoscale devices
Nanostructure
Nanostructures
Neutron scattering
Neutrons
Niobium
Nuclear scattering
Perpendicular magnetic anisotropy
Rapid quenching (metallurgy)
Ribbons
Saturation magnetization
Scattering
small-angle scattering
Soft magnetic materials
Softness
Structural analysis
Wave dispersion
Zirconium
title Magnetic Structural Analysis of Nanocrystalline Soft Magnets by Small-Angle Neutron Scattering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A14%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Structural%20Analysis%20of%20Nanocrystalline%20Soft%20Magnets%20by%20Small-Angle%20Neutron%20Scattering&rft.jtitle=IEEE%20magnetics%20letters&rft.au=Mamiya,%20Hiroaki&rft.date=2023&rft.volume=14&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1949-307X&rft.eissn=1949-3088&rft.coden=IMLEA3&rft_id=info:doi/10.1109/LMAG.2023.3242108&rft_dat=%3Cproquest_RIE%3E2785446967%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785446967&rft_id=info:pmid/&rft_ieee_id=10036365&rfr_iscdi=true