Magnetic Structural Analysis of Nanocrystalline Soft Magnets by Small-Angle Neutron Scattering
Nanocrystalline soft magnets have attracted significant attention for their improvement of energy conversion devices. It has been considered that the partial nanocrystallization of amorphous structures is a key to macroscopic magnetic softness. However, the mechanism has not been clarified because o...
Gespeichert in:
Veröffentlicht in: | IEEE magnetics letters 2023, Vol.14, p.1-5 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE magnetics letters |
container_volume | 14 |
creator | Mamiya, Hiroaki Oba, Yojiro Hiroi, Kosuke Miyatake, Takayuki Gautam, Ravi Sepehri-Amin, Hossein Ohkubo, Tadakatsu |
description | Nanocrystalline soft magnets have attracted significant attention for their improvement of energy conversion devices. It has been considered that the partial nanocrystallization of amorphous structures is a key to macroscopic magnetic softness. However, the mechanism has not been clarified because of inadequate knowledge of the magnetic nanostructures connecting microscopic crystalline structures and macroscopic magnetic properties. Here, we performed small-angle neutron scattering (SANS) for Fe 85 Si 2 B 8 P 4 Cu 1 alloy ribbons (NANOMETs). Rapidly quenched ribbons were annealed at 375 °C and 400 °C for 5 min. The X-ray diffraction pattern for the as-quenched ribbons did not exhibit peaks. Therefore, their atomic structure can be considered amorphous. Oppositely, evident α-iron peaks were observed for the ribbons annealed at 375 °C and 400 °C. The nuclear scattering contribution in SANS indicates that the precipitations were formed with sizes in the nanoscale. The magnetic scattering contribution in SANS for the as-quenched ribbon, whose intensity decreased with an increase in the scattering vector q in proportion to q −4 , disappeared when magnetic fields were applied. This behavior is consistent with the conventional magnetic domain picture. Oppositely, the reduction rates of the magnetic scattering contribution for q were nonmonotonous for the nanocrystallized ribbons. Furthermore, strong magnetic scattering was observed in the directions inclined to the magnetic field. This feature is similar to that reported for Fe-(Nb, Zr)-B alloy ribbons (NANOPERMs). The knowledge on the magnetic nanostructures characterized by the unusual angular dependence of magnetic scattering would be helpful to considering the relationship between partially nanocrystallized structure and macroscopic soft magnetic properties. |
doi_str_mv | 10.1109/LMAG.2023.3242108 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LMAG_2023_3242108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10036365</ieee_id><sourcerecordid>2785446967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-c6e143be3c1d06b520dbc49b8b25b9014be93e73ce1b2f9fce63b37ba1b2f4733</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsNT-AMHDgufU_crHHkPRKrT1EAVPLrvbSUlJk7q7OeTfm5AizmVmmPd9YR6E7ilZUkrk02abr5eMML7kTDBKsis0o1LIiJMsu_6b069btPD-SIbinLKYzND3Vh8aCJXFRXCdDZ3TNc4bXfe-8rgt8U43rXW9D7quqwZw0ZYBTyaPTY-L03CI8uZQA95BF1zb4MLqEMBVzeEO3ZS69rC49Dn6fHn-WL1Gm_f12yrfRJZJESKbABXcALd0TxITM7I3VkiTGRYbSagwIDmk3AI1rJSlhYQbnho9riLlfI4ep9yza3868EEd284Nb3jF0iwWIpFJOqjopLKu9d5Bqc6uOmnXK0rUSFKNJNVIUl1IDp6HyVMBwD894QlPYv4LO15wTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785446967</pqid></control><display><type>article</type><title>Magnetic Structural Analysis of Nanocrystalline Soft Magnets by Small-Angle Neutron Scattering</title><source>IEEE Electronic Library (IEL)</source><creator>Mamiya, Hiroaki ; Oba, Yojiro ; Hiroi, Kosuke ; Miyatake, Takayuki ; Gautam, Ravi ; Sepehri-Amin, Hossein ; Ohkubo, Tadakatsu</creator><creatorcontrib>Mamiya, Hiroaki ; Oba, Yojiro ; Hiroi, Kosuke ; Miyatake, Takayuki ; Gautam, Ravi ; Sepehri-Amin, Hossein ; Ohkubo, Tadakatsu</creatorcontrib><description>Nanocrystalline soft magnets have attracted significant attention for their improvement of energy conversion devices. It has been considered that the partial nanocrystallization of amorphous structures is a key to macroscopic magnetic softness. However, the mechanism has not been clarified because of inadequate knowledge of the magnetic nanostructures connecting microscopic crystalline structures and macroscopic magnetic properties. Here, we performed small-angle neutron scattering (SANS) for Fe 85 Si 2 B 8 P 4 Cu 1 alloy ribbons (NANOMETs). Rapidly quenched ribbons were annealed at 375 °C and 400 °C for 5 min. The X-ray diffraction pattern for the as-quenched ribbons did not exhibit peaks. Therefore, their atomic structure can be considered amorphous. Oppositely, evident α-iron peaks were observed for the ribbons annealed at 375 °C and 400 °C. The nuclear scattering contribution in SANS indicates that the precipitations were formed with sizes in the nanoscale. The magnetic scattering contribution in SANS for the as-quenched ribbon, whose intensity decreased with an increase in the scattering vector q in proportion to q −4 , disappeared when magnetic fields were applied. This behavior is consistent with the conventional magnetic domain picture. Oppositely, the reduction rates of the magnetic scattering contribution for q were nonmonotonous for the nanocrystallized ribbons. Furthermore, strong magnetic scattering was observed in the directions inclined to the magnetic field. This feature is similar to that reported for Fe-(Nb, Zr)-B alloy ribbons (NANOPERMs). The knowledge on the magnetic nanostructures characterized by the unusual angular dependence of magnetic scattering would be helpful to considering the relationship between partially nanocrystallized structure and macroscopic soft magnetic properties.</description><identifier>ISSN: 1949-307X</identifier><identifier>EISSN: 1949-3088</identifier><identifier>DOI: 10.1109/LMAG.2023.3242108</identifier><identifier>CODEN: IMLEA3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Alpha iron ; Amorphous magnetic materials ; Amorphous structure ; Annealing ; Atomic structure ; Diffraction patterns ; Energy conversion ; Magnetic anisotropy ; Magnetic domains ; Magnetic fields ; Magnetic properties ; Magnets ; nanocrystalline structure ; Nanocrystals ; Nanomagnetics ; nanomagnetism ; Nanoscale devices ; Nanostructure ; Nanostructures ; Neutron scattering ; Neutrons ; Niobium ; Nuclear scattering ; Perpendicular magnetic anisotropy ; Rapid quenching (metallurgy) ; Ribbons ; Saturation magnetization ; Scattering ; small-angle scattering ; Soft magnetic materials ; Softness ; Structural analysis ; Wave dispersion ; Zirconium</subject><ispartof>IEEE magnetics letters, 2023, Vol.14, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-c6e143be3c1d06b520dbc49b8b25b9014be93e73ce1b2f9fce63b37ba1b2f4733</citedby><cites>FETCH-LOGICAL-c294t-c6e143be3c1d06b520dbc49b8b25b9014be93e73ce1b2f9fce63b37ba1b2f4733</cites><orcidid>0000-0002-7840-3008 ; 0000-0003-3548-1951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10036365$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10036365$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mamiya, Hiroaki</creatorcontrib><creatorcontrib>Oba, Yojiro</creatorcontrib><creatorcontrib>Hiroi, Kosuke</creatorcontrib><creatorcontrib>Miyatake, Takayuki</creatorcontrib><creatorcontrib>Gautam, Ravi</creatorcontrib><creatorcontrib>Sepehri-Amin, Hossein</creatorcontrib><creatorcontrib>Ohkubo, Tadakatsu</creatorcontrib><title>Magnetic Structural Analysis of Nanocrystalline Soft Magnets by Small-Angle Neutron Scattering</title><title>IEEE magnetics letters</title><addtitle>LMAG</addtitle><description>Nanocrystalline soft magnets have attracted significant attention for their improvement of energy conversion devices. It has been considered that the partial nanocrystallization of amorphous structures is a key to macroscopic magnetic softness. However, the mechanism has not been clarified because of inadequate knowledge of the magnetic nanostructures connecting microscopic crystalline structures and macroscopic magnetic properties. Here, we performed small-angle neutron scattering (SANS) for Fe 85 Si 2 B 8 P 4 Cu 1 alloy ribbons (NANOMETs). Rapidly quenched ribbons were annealed at 375 °C and 400 °C for 5 min. The X-ray diffraction pattern for the as-quenched ribbons did not exhibit peaks. Therefore, their atomic structure can be considered amorphous. Oppositely, evident α-iron peaks were observed for the ribbons annealed at 375 °C and 400 °C. The nuclear scattering contribution in SANS indicates that the precipitations were formed with sizes in the nanoscale. The magnetic scattering contribution in SANS for the as-quenched ribbon, whose intensity decreased with an increase in the scattering vector q in proportion to q −4 , disappeared when magnetic fields were applied. This behavior is consistent with the conventional magnetic domain picture. Oppositely, the reduction rates of the magnetic scattering contribution for q were nonmonotonous for the nanocrystallized ribbons. Furthermore, strong magnetic scattering was observed in the directions inclined to the magnetic field. This feature is similar to that reported for Fe-(Nb, Zr)-B alloy ribbons (NANOPERMs). The knowledge on the magnetic nanostructures characterized by the unusual angular dependence of magnetic scattering would be helpful to considering the relationship between partially nanocrystallized structure and macroscopic soft magnetic properties.</description><subject>Alpha iron</subject><subject>Amorphous magnetic materials</subject><subject>Amorphous structure</subject><subject>Annealing</subject><subject>Atomic structure</subject><subject>Diffraction patterns</subject><subject>Energy conversion</subject><subject>Magnetic anisotropy</subject><subject>Magnetic domains</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnets</subject><subject>nanocrystalline structure</subject><subject>Nanocrystals</subject><subject>Nanomagnetics</subject><subject>nanomagnetism</subject><subject>Nanoscale devices</subject><subject>Nanostructure</subject><subject>Nanostructures</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Niobium</subject><subject>Nuclear scattering</subject><subject>Perpendicular magnetic anisotropy</subject><subject>Rapid quenching (metallurgy)</subject><subject>Ribbons</subject><subject>Saturation magnetization</subject><subject>Scattering</subject><subject>small-angle scattering</subject><subject>Soft magnetic materials</subject><subject>Softness</subject><subject>Structural analysis</subject><subject>Wave dispersion</subject><subject>Zirconium</subject><issn>1949-307X</issn><issn>1949-3088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsNT-AMHDgufU_crHHkPRKrT1EAVPLrvbSUlJk7q7OeTfm5AizmVmmPd9YR6E7ilZUkrk02abr5eMML7kTDBKsis0o1LIiJMsu_6b069btPD-SIbinLKYzND3Vh8aCJXFRXCdDZ3TNc4bXfe-8rgt8U43rXW9D7quqwZw0ZYBTyaPTY-L03CI8uZQA95BF1zb4MLqEMBVzeEO3ZS69rC49Dn6fHn-WL1Gm_f12yrfRJZJESKbABXcALd0TxITM7I3VkiTGRYbSagwIDmk3AI1rJSlhYQbnho9riLlfI4ep9yza3868EEd284Nb3jF0iwWIpFJOqjopLKu9d5Bqc6uOmnXK0rUSFKNJNVIUl1IDp6HyVMBwD894QlPYv4LO15wTg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Mamiya, Hiroaki</creator><creator>Oba, Yojiro</creator><creator>Hiroi, Kosuke</creator><creator>Miyatake, Takayuki</creator><creator>Gautam, Ravi</creator><creator>Sepehri-Amin, Hossein</creator><creator>Ohkubo, Tadakatsu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7840-3008</orcidid><orcidid>https://orcid.org/0000-0003-3548-1951</orcidid></search><sort><creationdate>2023</creationdate><title>Magnetic Structural Analysis of Nanocrystalline Soft Magnets by Small-Angle Neutron Scattering</title><author>Mamiya, Hiroaki ; Oba, Yojiro ; Hiroi, Kosuke ; Miyatake, Takayuki ; Gautam, Ravi ; Sepehri-Amin, Hossein ; Ohkubo, Tadakatsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-c6e143be3c1d06b520dbc49b8b25b9014be93e73ce1b2f9fce63b37ba1b2f4733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alpha iron</topic><topic>Amorphous magnetic materials</topic><topic>Amorphous structure</topic><topic>Annealing</topic><topic>Atomic structure</topic><topic>Diffraction patterns</topic><topic>Energy conversion</topic><topic>Magnetic anisotropy</topic><topic>Magnetic domains</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnets</topic><topic>nanocrystalline structure</topic><topic>Nanocrystals</topic><topic>Nanomagnetics</topic><topic>nanomagnetism</topic><topic>Nanoscale devices</topic><topic>Nanostructure</topic><topic>Nanostructures</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Niobium</topic><topic>Nuclear scattering</topic><topic>Perpendicular magnetic anisotropy</topic><topic>Rapid quenching (metallurgy)</topic><topic>Ribbons</topic><topic>Saturation magnetization</topic><topic>Scattering</topic><topic>small-angle scattering</topic><topic>Soft magnetic materials</topic><topic>Softness</topic><topic>Structural analysis</topic><topic>Wave dispersion</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mamiya, Hiroaki</creatorcontrib><creatorcontrib>Oba, Yojiro</creatorcontrib><creatorcontrib>Hiroi, Kosuke</creatorcontrib><creatorcontrib>Miyatake, Takayuki</creatorcontrib><creatorcontrib>Gautam, Ravi</creatorcontrib><creatorcontrib>Sepehri-Amin, Hossein</creatorcontrib><creatorcontrib>Ohkubo, Tadakatsu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE magnetics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mamiya, Hiroaki</au><au>Oba, Yojiro</au><au>Hiroi, Kosuke</au><au>Miyatake, Takayuki</au><au>Gautam, Ravi</au><au>Sepehri-Amin, Hossein</au><au>Ohkubo, Tadakatsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Structural Analysis of Nanocrystalline Soft Magnets by Small-Angle Neutron Scattering</atitle><jtitle>IEEE magnetics letters</jtitle><stitle>LMAG</stitle><date>2023</date><risdate>2023</risdate><volume>14</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1949-307X</issn><eissn>1949-3088</eissn><coden>IMLEA3</coden><abstract>Nanocrystalline soft magnets have attracted significant attention for their improvement of energy conversion devices. It has been considered that the partial nanocrystallization of amorphous structures is a key to macroscopic magnetic softness. However, the mechanism has not been clarified because of inadequate knowledge of the magnetic nanostructures connecting microscopic crystalline structures and macroscopic magnetic properties. Here, we performed small-angle neutron scattering (SANS) for Fe 85 Si 2 B 8 P 4 Cu 1 alloy ribbons (NANOMETs). Rapidly quenched ribbons were annealed at 375 °C and 400 °C for 5 min. The X-ray diffraction pattern for the as-quenched ribbons did not exhibit peaks. Therefore, their atomic structure can be considered amorphous. Oppositely, evident α-iron peaks were observed for the ribbons annealed at 375 °C and 400 °C. The nuclear scattering contribution in SANS indicates that the precipitations were formed with sizes in the nanoscale. The magnetic scattering contribution in SANS for the as-quenched ribbon, whose intensity decreased with an increase in the scattering vector q in proportion to q −4 , disappeared when magnetic fields were applied. This behavior is consistent with the conventional magnetic domain picture. Oppositely, the reduction rates of the magnetic scattering contribution for q were nonmonotonous for the nanocrystallized ribbons. Furthermore, strong magnetic scattering was observed in the directions inclined to the magnetic field. This feature is similar to that reported for Fe-(Nb, Zr)-B alloy ribbons (NANOPERMs). The knowledge on the magnetic nanostructures characterized by the unusual angular dependence of magnetic scattering would be helpful to considering the relationship between partially nanocrystallized structure and macroscopic soft magnetic properties.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LMAG.2023.3242108</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7840-3008</orcidid><orcidid>https://orcid.org/0000-0003-3548-1951</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-307X |
ispartof | IEEE magnetics letters, 2023, Vol.14, p.1-5 |
issn | 1949-307X 1949-3088 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LMAG_2023_3242108 |
source | IEEE Electronic Library (IEL) |
subjects | Alpha iron Amorphous magnetic materials Amorphous structure Annealing Atomic structure Diffraction patterns Energy conversion Magnetic anisotropy Magnetic domains Magnetic fields Magnetic properties Magnets nanocrystalline structure Nanocrystals Nanomagnetics nanomagnetism Nanoscale devices Nanostructure Nanostructures Neutron scattering Neutrons Niobium Nuclear scattering Perpendicular magnetic anisotropy Rapid quenching (metallurgy) Ribbons Saturation magnetization Scattering small-angle scattering Soft magnetic materials Softness Structural analysis Wave dispersion Zirconium |
title | Magnetic Structural Analysis of Nanocrystalline Soft Magnets by Small-Angle Neutron Scattering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A14%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Structural%20Analysis%20of%20Nanocrystalline%20Soft%20Magnets%20by%20Small-Angle%20Neutron%20Scattering&rft.jtitle=IEEE%20magnetics%20letters&rft.au=Mamiya,%20Hiroaki&rft.date=2023&rft.volume=14&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1949-307X&rft.eissn=1949-3088&rft.coden=IMLEA3&rft_id=info:doi/10.1109/LMAG.2023.3242108&rft_dat=%3Cproquest_RIE%3E2785446967%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785446967&rft_id=info:pmid/&rft_ieee_id=10036365&rfr_iscdi=true |