Enhanced-HisSegNet: Improved SAR Image Flood Segmentation with Learnable Histogram Layers and Active Contour Model

Synthetic Aperture Radar (SAR) imagery plays a critical role in flood mapping due to its ability to capture data under all-weather and day-and-night conditions. However, existing SAR segmentation methods, including the state-of-the-art HisSegNet [1], face challenges such as limited generalization, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2025-01, p.1-1
Hauptverfasser: Asadi, Maryam, Sarabi, Soroush, Kordani, Marjan, Ilani, Mohsen Asghari, Banad, Yaser Mike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume
creator Asadi, Maryam
Sarabi, Soroush
Kordani, Marjan
Ilani, Mohsen Asghari
Banad, Yaser Mike
description Synthetic Aperture Radar (SAR) imagery plays a critical role in flood mapping due to its ability to capture data under all-weather and day-and-night conditions. However, existing SAR segmentation methods, including the state-of-the-art HisSegNet [1], face challenges such as limited generalization, insufficient utilization of SAR-specific features, and suboptimal performance on diverse datasets. To address these limitations, we propose Enhanced-HisSegNet, a multimodal fusion strategy that builds upon HisSegNet by integrating learnable histogram layers tailored for SAR data with Active Contour Models (ACMs) for precise boundary refinement. These components are embedded into fine-tuned Deep Segmentation Neural Networks (DSNNs) to improve segmentation accuracy. Our model was evaluated on real SAR datasets, employing cross-dataset validation for robustness. Experimental results demonstrate significant performance gains, with up to 10% improvement in Intersection over Union (IoU) - a key metric that measures segmentation accuracy by computing the ratio of intersection to union between predicted and ground truth regions - on internal datasets and 4% on external datasets, showcasing enhanced accuracy, robustness, and applicability. The code for this work is available at https://github.com/Mohsena1990/Enhanced-HistSegNet.
doi_str_mv 10.1109/LGRS.2025.3532334
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2025_3532334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10848168</ieee_id><sourcerecordid>10_1109_LGRS_2025_3532334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638-d9a40a4efd9d4e489ea0be88e63f51628431099317bba761f2382b47881808e3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBh_0DqbnY3mXgrpV8QFRoP3sImmaSRZLdsYkv_vQntwdPMC-8zMA8hz5zNOGfRa7zeJTOf-WomlPCFkDdkwpUCj6mQ3467VJ6K4PuePHTdD2O-BAgnxC3NXpscC29TdwlWH9i_0W17cPaIBU3muyHoCumqsXbIWLVoet3X1tBT3e9pjNoZnTVIB763ldMtjfUZXUe1Keg87-sj0oU1vf119N0W2DySu1I3HT5d55Qkq-XXYuPFn-vtYh57eSDAKyItmZZYFlEhUUKEmmUIgIEoFQ98kGL4OxI8zDIdBrz0BfiZDAE4MEAxJfxyNXe26xyW6cHVrXbnlLN0VJaOytJRWXpVNjAvF6ZGxH99kMADEH9EKmhi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced-HisSegNet: Improved SAR Image Flood Segmentation with Learnable Histogram Layers and Active Contour Model</title><source>IEEE Electronic Library (IEL)</source><creator>Asadi, Maryam ; Sarabi, Soroush ; Kordani, Marjan ; Ilani, Mohsen Asghari ; Banad, Yaser Mike</creator><creatorcontrib>Asadi, Maryam ; Sarabi, Soroush ; Kordani, Marjan ; Ilani, Mohsen Asghari ; Banad, Yaser Mike</creatorcontrib><description>Synthetic Aperture Radar (SAR) imagery plays a critical role in flood mapping due to its ability to capture data under all-weather and day-and-night conditions. However, existing SAR segmentation methods, including the state-of-the-art HisSegNet [1], face challenges such as limited generalization, insufficient utilization of SAR-specific features, and suboptimal performance on diverse datasets. To address these limitations, we propose Enhanced-HisSegNet, a multimodal fusion strategy that builds upon HisSegNet by integrating learnable histogram layers tailored for SAR data with Active Contour Models (ACMs) for precise boundary refinement. These components are embedded into fine-tuned Deep Segmentation Neural Networks (DSNNs) to improve segmentation accuracy. Our model was evaluated on real SAR datasets, employing cross-dataset validation for robustness. Experimental results demonstrate significant performance gains, with up to 10% improvement in Intersection over Union (IoU) - a key metric that measures segmentation accuracy by computing the ratio of intersection to union between predicted and ground truth regions - on internal datasets and 4% on external datasets, showcasing enhanced accuracy, robustness, and applicability. The code for this work is available at https://github.com/Mohsena1990/Enhanced-HistSegNet.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2025.3532334</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Active Contour Models (ACMs) ; Active contours ; Computational modeling ; Flood segmentation ; Floods ; Histogram Layer ; Histograms ; Image segmentation ; Measurement ; Radar polarimetry ; Synthetic aperture radar ; Synthetic Aperture Radar (SAR) ; Training</subject><ispartof>IEEE geoscience and remote sensing letters, 2025-01, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7339-810X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10848168$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10848168$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Asadi, Maryam</creatorcontrib><creatorcontrib>Sarabi, Soroush</creatorcontrib><creatorcontrib>Kordani, Marjan</creatorcontrib><creatorcontrib>Ilani, Mohsen Asghari</creatorcontrib><creatorcontrib>Banad, Yaser Mike</creatorcontrib><title>Enhanced-HisSegNet: Improved SAR Image Flood Segmentation with Learnable Histogram Layers and Active Contour Model</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Synthetic Aperture Radar (SAR) imagery plays a critical role in flood mapping due to its ability to capture data under all-weather and day-and-night conditions. However, existing SAR segmentation methods, including the state-of-the-art HisSegNet [1], face challenges such as limited generalization, insufficient utilization of SAR-specific features, and suboptimal performance on diverse datasets. To address these limitations, we propose Enhanced-HisSegNet, a multimodal fusion strategy that builds upon HisSegNet by integrating learnable histogram layers tailored for SAR data with Active Contour Models (ACMs) for precise boundary refinement. These components are embedded into fine-tuned Deep Segmentation Neural Networks (DSNNs) to improve segmentation accuracy. Our model was evaluated on real SAR datasets, employing cross-dataset validation for robustness. Experimental results demonstrate significant performance gains, with up to 10% improvement in Intersection over Union (IoU) - a key metric that measures segmentation accuracy by computing the ratio of intersection to union between predicted and ground truth regions - on internal datasets and 4% on external datasets, showcasing enhanced accuracy, robustness, and applicability. The code for this work is available at https://github.com/Mohsena1990/Enhanced-HistSegNet.</description><subject>Accuracy</subject><subject>Active Contour Models (ACMs)</subject><subject>Active contours</subject><subject>Computational modeling</subject><subject>Flood segmentation</subject><subject>Floods</subject><subject>Histogram Layer</subject><subject>Histograms</subject><subject>Image segmentation</subject><subject>Measurement</subject><subject>Radar polarimetry</subject><subject>Synthetic aperture radar</subject><subject>Synthetic Aperture Radar (SAR)</subject><subject>Training</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBh_0DqbnY3mXgrpV8QFRoP3sImmaSRZLdsYkv_vQntwdPMC-8zMA8hz5zNOGfRa7zeJTOf-WomlPCFkDdkwpUCj6mQ3467VJ6K4PuePHTdD2O-BAgnxC3NXpscC29TdwlWH9i_0W17cPaIBU3muyHoCumqsXbIWLVoet3X1tBT3e9pjNoZnTVIB763ldMtjfUZXUe1Keg87-sj0oU1vf119N0W2DySu1I3HT5d55Qkq-XXYuPFn-vtYh57eSDAKyItmZZYFlEhUUKEmmUIgIEoFQ98kGL4OxI8zDIdBrz0BfiZDAE4MEAxJfxyNXe26xyW6cHVrXbnlLN0VJaOytJRWXpVNjAvF6ZGxH99kMADEH9EKmhi</recordid><startdate>20250120</startdate><enddate>20250120</enddate><creator>Asadi, Maryam</creator><creator>Sarabi, Soroush</creator><creator>Kordani, Marjan</creator><creator>Ilani, Mohsen Asghari</creator><creator>Banad, Yaser Mike</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7339-810X</orcidid></search><sort><creationdate>20250120</creationdate><title>Enhanced-HisSegNet: Improved SAR Image Flood Segmentation with Learnable Histogram Layers and Active Contour Model</title><author>Asadi, Maryam ; Sarabi, Soroush ; Kordani, Marjan ; Ilani, Mohsen Asghari ; Banad, Yaser Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638-d9a40a4efd9d4e489ea0be88e63f51628431099317bba761f2382b47881808e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Active Contour Models (ACMs)</topic><topic>Active contours</topic><topic>Computational modeling</topic><topic>Flood segmentation</topic><topic>Floods</topic><topic>Histogram Layer</topic><topic>Histograms</topic><topic>Image segmentation</topic><topic>Measurement</topic><topic>Radar polarimetry</topic><topic>Synthetic aperture radar</topic><topic>Synthetic Aperture Radar (SAR)</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asadi, Maryam</creatorcontrib><creatorcontrib>Sarabi, Soroush</creatorcontrib><creatorcontrib>Kordani, Marjan</creatorcontrib><creatorcontrib>Ilani, Mohsen Asghari</creatorcontrib><creatorcontrib>Banad, Yaser Mike</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Asadi, Maryam</au><au>Sarabi, Soroush</au><au>Kordani, Marjan</au><au>Ilani, Mohsen Asghari</au><au>Banad, Yaser Mike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced-HisSegNet: Improved SAR Image Flood Segmentation with Learnable Histogram Layers and Active Contour Model</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2025-01-20</date><risdate>2025</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Synthetic Aperture Radar (SAR) imagery plays a critical role in flood mapping due to its ability to capture data under all-weather and day-and-night conditions. However, existing SAR segmentation methods, including the state-of-the-art HisSegNet [1], face challenges such as limited generalization, insufficient utilization of SAR-specific features, and suboptimal performance on diverse datasets. To address these limitations, we propose Enhanced-HisSegNet, a multimodal fusion strategy that builds upon HisSegNet by integrating learnable histogram layers tailored for SAR data with Active Contour Models (ACMs) for precise boundary refinement. These components are embedded into fine-tuned Deep Segmentation Neural Networks (DSNNs) to improve segmentation accuracy. Our model was evaluated on real SAR datasets, employing cross-dataset validation for robustness. Experimental results demonstrate significant performance gains, with up to 10% improvement in Intersection over Union (IoU) - a key metric that measures segmentation accuracy by computing the ratio of intersection to union between predicted and ground truth regions - on internal datasets and 4% on external datasets, showcasing enhanced accuracy, robustness, and applicability. The code for this work is available at https://github.com/Mohsena1990/Enhanced-HistSegNet.</abstract><pub>IEEE</pub><doi>10.1109/LGRS.2025.3532334</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7339-810X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2025-01, p.1-1
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2025_3532334
source IEEE Electronic Library (IEL)
subjects Accuracy
Active Contour Models (ACMs)
Active contours
Computational modeling
Flood segmentation
Floods
Histogram Layer
Histograms
Image segmentation
Measurement
Radar polarimetry
Synthetic aperture radar
Synthetic Aperture Radar (SAR)
Training
title Enhanced-HisSegNet: Improved SAR Image Flood Segmentation with Learnable Histogram Layers and Active Contour Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced-HisSegNet:%20Improved%20SAR%20Image%20Flood%20Segmentation%20with%20Learnable%20Histogram%20Layers%20and%20Active%20Contour%20Model&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Asadi,%20Maryam&rft.date=2025-01-20&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2025.3532334&rft_dat=%3Ccrossref_RIE%3E10_1109_LGRS_2025_3532334%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10848168&rfr_iscdi=true