Enhanced-HisSegNet: Improved SAR Image Flood Segmentation with Learnable Histogram Layers and Active Contour Model
Synthetic Aperture Radar (SAR) imagery plays a critical role in flood mapping due to its ability to capture data under all-weather and day-and-night conditions. However, existing SAR segmentation methods, including the state-of-the-art HisSegNet [1], face challenges such as limited generalization, i...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2025-01, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | |
creator | Asadi, Maryam Sarabi, Soroush Kordani, Marjan Ilani, Mohsen Asghari Banad, Yaser Mike |
description | Synthetic Aperture Radar (SAR) imagery plays a critical role in flood mapping due to its ability to capture data under all-weather and day-and-night conditions. However, existing SAR segmentation methods, including the state-of-the-art HisSegNet [1], face challenges such as limited generalization, insufficient utilization of SAR-specific features, and suboptimal performance on diverse datasets. To address these limitations, we propose Enhanced-HisSegNet, a multimodal fusion strategy that builds upon HisSegNet by integrating learnable histogram layers tailored for SAR data with Active Contour Models (ACMs) for precise boundary refinement. These components are embedded into fine-tuned Deep Segmentation Neural Networks (DSNNs) to improve segmentation accuracy. Our model was evaluated on real SAR datasets, employing cross-dataset validation for robustness. Experimental results demonstrate significant performance gains, with up to 10% improvement in Intersection over Union (IoU) - a key metric that measures segmentation accuracy by computing the ratio of intersection to union between predicted and ground truth regions - on internal datasets and 4% on external datasets, showcasing enhanced accuracy, robustness, and applicability. The code for this work is available at https://github.com/Mohsena1990/Enhanced-HistSegNet. |
doi_str_mv | 10.1109/LGRS.2025.3532334 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2025_3532334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10848168</ieee_id><sourcerecordid>10_1109_LGRS_2025_3532334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638-d9a40a4efd9d4e489ea0be88e63f51628431099317bba761f2382b47881808e3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBh_0DqbnY3mXgrpV8QFRoP3sImmaSRZLdsYkv_vQntwdPMC-8zMA8hz5zNOGfRa7zeJTOf-WomlPCFkDdkwpUCj6mQ3467VJ6K4PuePHTdD2O-BAgnxC3NXpscC29TdwlWH9i_0W17cPaIBU3muyHoCumqsXbIWLVoet3X1tBT3e9pjNoZnTVIB763ldMtjfUZXUe1Keg87-sj0oU1vf119N0W2DySu1I3HT5d55Qkq-XXYuPFn-vtYh57eSDAKyItmZZYFlEhUUKEmmUIgIEoFQ98kGL4OxI8zDIdBrz0BfiZDAE4MEAxJfxyNXe26xyW6cHVrXbnlLN0VJaOytJRWXpVNjAvF6ZGxH99kMADEH9EKmhi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced-HisSegNet: Improved SAR Image Flood Segmentation with Learnable Histogram Layers and Active Contour Model</title><source>IEEE Electronic Library (IEL)</source><creator>Asadi, Maryam ; Sarabi, Soroush ; Kordani, Marjan ; Ilani, Mohsen Asghari ; Banad, Yaser Mike</creator><creatorcontrib>Asadi, Maryam ; Sarabi, Soroush ; Kordani, Marjan ; Ilani, Mohsen Asghari ; Banad, Yaser Mike</creatorcontrib><description>Synthetic Aperture Radar (SAR) imagery plays a critical role in flood mapping due to its ability to capture data under all-weather and day-and-night conditions. However, existing SAR segmentation methods, including the state-of-the-art HisSegNet [1], face challenges such as limited generalization, insufficient utilization of SAR-specific features, and suboptimal performance on diverse datasets. To address these limitations, we propose Enhanced-HisSegNet, a multimodal fusion strategy that builds upon HisSegNet by integrating learnable histogram layers tailored for SAR data with Active Contour Models (ACMs) for precise boundary refinement. These components are embedded into fine-tuned Deep Segmentation Neural Networks (DSNNs) to improve segmentation accuracy. Our model was evaluated on real SAR datasets, employing cross-dataset validation for robustness. Experimental results demonstrate significant performance gains, with up to 10% improvement in Intersection over Union (IoU) - a key metric that measures segmentation accuracy by computing the ratio of intersection to union between predicted and ground truth regions - on internal datasets and 4% on external datasets, showcasing enhanced accuracy, robustness, and applicability. The code for this work is available at https://github.com/Mohsena1990/Enhanced-HistSegNet.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2025.3532334</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Active Contour Models (ACMs) ; Active contours ; Computational modeling ; Flood segmentation ; Floods ; Histogram Layer ; Histograms ; Image segmentation ; Measurement ; Radar polarimetry ; Synthetic aperture radar ; Synthetic Aperture Radar (SAR) ; Training</subject><ispartof>IEEE geoscience and remote sensing letters, 2025-01, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7339-810X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10848168$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10848168$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Asadi, Maryam</creatorcontrib><creatorcontrib>Sarabi, Soroush</creatorcontrib><creatorcontrib>Kordani, Marjan</creatorcontrib><creatorcontrib>Ilani, Mohsen Asghari</creatorcontrib><creatorcontrib>Banad, Yaser Mike</creatorcontrib><title>Enhanced-HisSegNet: Improved SAR Image Flood Segmentation with Learnable Histogram Layers and Active Contour Model</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Synthetic Aperture Radar (SAR) imagery plays a critical role in flood mapping due to its ability to capture data under all-weather and day-and-night conditions. However, existing SAR segmentation methods, including the state-of-the-art HisSegNet [1], face challenges such as limited generalization, insufficient utilization of SAR-specific features, and suboptimal performance on diverse datasets. To address these limitations, we propose Enhanced-HisSegNet, a multimodal fusion strategy that builds upon HisSegNet by integrating learnable histogram layers tailored for SAR data with Active Contour Models (ACMs) for precise boundary refinement. These components are embedded into fine-tuned Deep Segmentation Neural Networks (DSNNs) to improve segmentation accuracy. Our model was evaluated on real SAR datasets, employing cross-dataset validation for robustness. Experimental results demonstrate significant performance gains, with up to 10% improvement in Intersection over Union (IoU) - a key metric that measures segmentation accuracy by computing the ratio of intersection to union between predicted and ground truth regions - on internal datasets and 4% on external datasets, showcasing enhanced accuracy, robustness, and applicability. The code for this work is available at https://github.com/Mohsena1990/Enhanced-HistSegNet.</description><subject>Accuracy</subject><subject>Active Contour Models (ACMs)</subject><subject>Active contours</subject><subject>Computational modeling</subject><subject>Flood segmentation</subject><subject>Floods</subject><subject>Histogram Layer</subject><subject>Histograms</subject><subject>Image segmentation</subject><subject>Measurement</subject><subject>Radar polarimetry</subject><subject>Synthetic aperture radar</subject><subject>Synthetic Aperture Radar (SAR)</subject><subject>Training</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBh_0DqbnY3mXgrpV8QFRoP3sImmaSRZLdsYkv_vQntwdPMC-8zMA8hz5zNOGfRa7zeJTOf-WomlPCFkDdkwpUCj6mQ3467VJ6K4PuePHTdD2O-BAgnxC3NXpscC29TdwlWH9i_0W17cPaIBU3muyHoCumqsXbIWLVoet3X1tBT3e9pjNoZnTVIB763ldMtjfUZXUe1Keg87-sj0oU1vf119N0W2DySu1I3HT5d55Qkq-XXYuPFn-vtYh57eSDAKyItmZZYFlEhUUKEmmUIgIEoFQ98kGL4OxI8zDIdBrz0BfiZDAE4MEAxJfxyNXe26xyW6cHVrXbnlLN0VJaOytJRWXpVNjAvF6ZGxH99kMADEH9EKmhi</recordid><startdate>20250120</startdate><enddate>20250120</enddate><creator>Asadi, Maryam</creator><creator>Sarabi, Soroush</creator><creator>Kordani, Marjan</creator><creator>Ilani, Mohsen Asghari</creator><creator>Banad, Yaser Mike</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7339-810X</orcidid></search><sort><creationdate>20250120</creationdate><title>Enhanced-HisSegNet: Improved SAR Image Flood Segmentation with Learnable Histogram Layers and Active Contour Model</title><author>Asadi, Maryam ; Sarabi, Soroush ; Kordani, Marjan ; Ilani, Mohsen Asghari ; Banad, Yaser Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638-d9a40a4efd9d4e489ea0be88e63f51628431099317bba761f2382b47881808e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Active Contour Models (ACMs)</topic><topic>Active contours</topic><topic>Computational modeling</topic><topic>Flood segmentation</topic><topic>Floods</topic><topic>Histogram Layer</topic><topic>Histograms</topic><topic>Image segmentation</topic><topic>Measurement</topic><topic>Radar polarimetry</topic><topic>Synthetic aperture radar</topic><topic>Synthetic Aperture Radar (SAR)</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asadi, Maryam</creatorcontrib><creatorcontrib>Sarabi, Soroush</creatorcontrib><creatorcontrib>Kordani, Marjan</creatorcontrib><creatorcontrib>Ilani, Mohsen Asghari</creatorcontrib><creatorcontrib>Banad, Yaser Mike</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Asadi, Maryam</au><au>Sarabi, Soroush</au><au>Kordani, Marjan</au><au>Ilani, Mohsen Asghari</au><au>Banad, Yaser Mike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced-HisSegNet: Improved SAR Image Flood Segmentation with Learnable Histogram Layers and Active Contour Model</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2025-01-20</date><risdate>2025</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Synthetic Aperture Radar (SAR) imagery plays a critical role in flood mapping due to its ability to capture data under all-weather and day-and-night conditions. However, existing SAR segmentation methods, including the state-of-the-art HisSegNet [1], face challenges such as limited generalization, insufficient utilization of SAR-specific features, and suboptimal performance on diverse datasets. To address these limitations, we propose Enhanced-HisSegNet, a multimodal fusion strategy that builds upon HisSegNet by integrating learnable histogram layers tailored for SAR data with Active Contour Models (ACMs) for precise boundary refinement. These components are embedded into fine-tuned Deep Segmentation Neural Networks (DSNNs) to improve segmentation accuracy. Our model was evaluated on real SAR datasets, employing cross-dataset validation for robustness. Experimental results demonstrate significant performance gains, with up to 10% improvement in Intersection over Union (IoU) - a key metric that measures segmentation accuracy by computing the ratio of intersection to union between predicted and ground truth regions - on internal datasets and 4% on external datasets, showcasing enhanced accuracy, robustness, and applicability. The code for this work is available at https://github.com/Mohsena1990/Enhanced-HistSegNet.</abstract><pub>IEEE</pub><doi>10.1109/LGRS.2025.3532334</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7339-810X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2025-01, p.1-1 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2025_3532334 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Active Contour Models (ACMs) Active contours Computational modeling Flood segmentation Floods Histogram Layer Histograms Image segmentation Measurement Radar polarimetry Synthetic aperture radar Synthetic Aperture Radar (SAR) Training |
title | Enhanced-HisSegNet: Improved SAR Image Flood Segmentation with Learnable Histogram Layers and Active Contour Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced-HisSegNet:%20Improved%20SAR%20Image%20Flood%20Segmentation%20with%20Learnable%20Histogram%20Layers%20and%20Active%20Contour%20Model&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Asadi,%20Maryam&rft.date=2025-01-20&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2025.3532334&rft_dat=%3Ccrossref_RIE%3E10_1109_LGRS_2025_3532334%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10848168&rfr_iscdi=true |