Spatial Reconstruction Based on Spectral Metric for Hyperspectral Image Classification
We present a hyperspectral image (HSI) classification method based on spatial reconstruction to alleviate the influences of view changes to HSI encoding, and it mainly contains a spatial reconstruction mechanism, a feature representation network (FRN), and an auxiliary branch. The spatial reconstruc...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 21 |
creator | Fang, Jie Zhong, Yulu Cao, Xiaoqian Wang, Dianwei |
description | We present a hyperspectral image (HSI) classification method based on spatial reconstruction to alleviate the influences of view changes to HSI encoding, and it mainly contains a spatial reconstruction mechanism, a feature representation network (FRN), and an auxiliary branch. The spatial reconstruction mechanism based on spectral metric unifies image patches with the same entities and different neighbor distributions to an identical cube, while the FRN based on soft band selection adaptively emphasizes informative spectral bands and suppresses redundant ones in the coding phase, and these two modules can form spatial distribution-insensitive data space and noise-robust discriminative feature vector and further improve the classification performance. Besides, the auxiliary branch based on the decoupling strategy ensures the latent relationships among neighbor pixels of the original patch, and it also highlights the relative importance of the center pixel. In addition, the experimental results on three public datasets demonstrate the superiority of the proposed method. |
doi_str_mv | 10.1109/LGRS.2024.3454216 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2024_3454216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10664443</ieee_id><sourcerecordid>3107266874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-4cb4bf69c8bf003fdeaa0c19d4170f3ffaa7a02f273214ccdf80283aa4f614f43</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWKsPIHhY8Lw1k2ST7FGLtoWK0Kp4C9NsIlva7pqkh769u7SCp_lhvn8GPkJugY4AaPkwnyyWI0aZGHFRCAbyjAygKHROCwXnfRZFXpT665JcxbimHam1GpDPZYupxk22cLbZxRT2NtXNLnvC6KqsC8vW2RQ64NWlUNvMNyGbHloX4t9itsVvl403GGPta4t9_5pceNxEd3OaQ_Lx8vw-nubzt8ls_DjPLSiZcmFXYuVlafXKU8p95RCphbISoKjn3iMqpMwzxRkIayuvKdMcUXgJwgs-JPfHu21ofvYuJrNu9mHXvTQcqGJSatVTcKRsaGIMzps21FsMBwPU9PpMr8_0-sxJX9e5O3Zq59w_XkohBOe_u1JtPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107266874</pqid></control><display><type>article</type><title>Spatial Reconstruction Based on Spectral Metric for Hyperspectral Image Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Fang, Jie ; Zhong, Yulu ; Cao, Xiaoqian ; Wang, Dianwei</creator><creatorcontrib>Fang, Jie ; Zhong, Yulu ; Cao, Xiaoqian ; Wang, Dianwei</creatorcontrib><description>We present a hyperspectral image (HSI) classification method based on spatial reconstruction to alleviate the influences of view changes to HSI encoding, and it mainly contains a spatial reconstruction mechanism, a feature representation network (FRN), and an auxiliary branch. The spatial reconstruction mechanism based on spectral metric unifies image patches with the same entities and different neighbor distributions to an identical cube, while the FRN based on soft band selection adaptively emphasizes informative spectral bands and suppresses redundant ones in the coding phase, and these two modules can form spatial distribution-insensitive data space and noise-robust discriminative feature vector and further improve the classification performance. Besides, the auxiliary branch based on the decoupling strategy ensures the latent relationships among neighbor pixels of the original patch, and it also highlights the relative importance of the center pixel. In addition, the experimental results on three public datasets demonstrate the superiority of the proposed method.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2024.3454216</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Convolution ; Convolutional neural networks ; Decoupling ; Hyperspectral image (HSI) classification ; Hyperspectral imaging ; Image classification ; Image coding ; Image processing ; Image reconstruction ; Mathematical models ; Measurement ; Pixels ; soft band selection ; Spatial distribution ; spatial reconstruction ; Spectral bands ; spectral metric ; Vectors</subject><ispartof>IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-4cb4bf69c8bf003fdeaa0c19d4170f3ffaa7a02f273214ccdf80283aa4f614f43</cites><orcidid>0000-0002-8325-3905 ; 0000-0002-6707-988X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10664443$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10664443$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fang, Jie</creatorcontrib><creatorcontrib>Zhong, Yulu</creatorcontrib><creatorcontrib>Cao, Xiaoqian</creatorcontrib><creatorcontrib>Wang, Dianwei</creatorcontrib><title>Spatial Reconstruction Based on Spectral Metric for Hyperspectral Image Classification</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>We present a hyperspectral image (HSI) classification method based on spatial reconstruction to alleviate the influences of view changes to HSI encoding, and it mainly contains a spatial reconstruction mechanism, a feature representation network (FRN), and an auxiliary branch. The spatial reconstruction mechanism based on spectral metric unifies image patches with the same entities and different neighbor distributions to an identical cube, while the FRN based on soft band selection adaptively emphasizes informative spectral bands and suppresses redundant ones in the coding phase, and these two modules can form spatial distribution-insensitive data space and noise-robust discriminative feature vector and further improve the classification performance. Besides, the auxiliary branch based on the decoupling strategy ensures the latent relationships among neighbor pixels of the original patch, and it also highlights the relative importance of the center pixel. In addition, the experimental results on three public datasets demonstrate the superiority of the proposed method.</description><subject>Classification</subject><subject>Convolution</subject><subject>Convolutional neural networks</subject><subject>Decoupling</subject><subject>Hyperspectral image (HSI) classification</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Image coding</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Pixels</subject><subject>soft band selection</subject><subject>Spatial distribution</subject><subject>spatial reconstruction</subject><subject>Spectral bands</subject><subject>spectral metric</subject><subject>Vectors</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFKAzEQhoMoWKsPIHhY8Lw1k2ST7FGLtoWK0Kp4C9NsIlva7pqkh769u7SCp_lhvn8GPkJugY4AaPkwnyyWI0aZGHFRCAbyjAygKHROCwXnfRZFXpT665JcxbimHam1GpDPZYupxk22cLbZxRT2NtXNLnvC6KqsC8vW2RQ64NWlUNvMNyGbHloX4t9itsVvl403GGPta4t9_5pceNxEd3OaQ_Lx8vw-nubzt8ls_DjPLSiZcmFXYuVlafXKU8p95RCphbISoKjn3iMqpMwzxRkIayuvKdMcUXgJwgs-JPfHu21ofvYuJrNu9mHXvTQcqGJSatVTcKRsaGIMzps21FsMBwPU9PpMr8_0-sxJX9e5O3Zq59w_XkohBOe_u1JtPg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Fang, Jie</creator><creator>Zhong, Yulu</creator><creator>Cao, Xiaoqian</creator><creator>Wang, Dianwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8325-3905</orcidid><orcidid>https://orcid.org/0000-0002-6707-988X</orcidid></search><sort><creationdate>2024</creationdate><title>Spatial Reconstruction Based on Spectral Metric for Hyperspectral Image Classification</title><author>Fang, Jie ; Zhong, Yulu ; Cao, Xiaoqian ; Wang, Dianwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-4cb4bf69c8bf003fdeaa0c19d4170f3ffaa7a02f273214ccdf80283aa4f614f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Convolution</topic><topic>Convolutional neural networks</topic><topic>Decoupling</topic><topic>Hyperspectral image (HSI) classification</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Image coding</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Pixels</topic><topic>soft band selection</topic><topic>Spatial distribution</topic><topic>spatial reconstruction</topic><topic>Spectral bands</topic><topic>spectral metric</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Jie</creatorcontrib><creatorcontrib>Zhong, Yulu</creatorcontrib><creatorcontrib>Cao, Xiaoqian</creatorcontrib><creatorcontrib>Wang, Dianwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fang, Jie</au><au>Zhong, Yulu</au><au>Cao, Xiaoqian</au><au>Wang, Dianwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Reconstruction Based on Spectral Metric for Hyperspectral Image Classification</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>We present a hyperspectral image (HSI) classification method based on spatial reconstruction to alleviate the influences of view changes to HSI encoding, and it mainly contains a spatial reconstruction mechanism, a feature representation network (FRN), and an auxiliary branch. The spatial reconstruction mechanism based on spectral metric unifies image patches with the same entities and different neighbor distributions to an identical cube, while the FRN based on soft band selection adaptively emphasizes informative spectral bands and suppresses redundant ones in the coding phase, and these two modules can form spatial distribution-insensitive data space and noise-robust discriminative feature vector and further improve the classification performance. Besides, the auxiliary branch based on the decoupling strategy ensures the latent relationships among neighbor pixels of the original patch, and it also highlights the relative importance of the center pixel. In addition, the experimental results on three public datasets demonstrate the superiority of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2024.3454216</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8325-3905</orcidid><orcidid>https://orcid.org/0000-0002-6707-988X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2024_3454216 |
source | IEEE Electronic Library (IEL) |
subjects | Classification Convolution Convolutional neural networks Decoupling Hyperspectral image (HSI) classification Hyperspectral imaging Image classification Image coding Image processing Image reconstruction Mathematical models Measurement Pixels soft band selection Spatial distribution spatial reconstruction Spectral bands spectral metric Vectors |
title | Spatial Reconstruction Based on Spectral Metric for Hyperspectral Image Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Reconstruction%20Based%20on%20Spectral%20Metric%20for%20Hyperspectral%20Image%20Classification&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Fang,%20Jie&rft.date=2024&rft.volume=21&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2024.3454216&rft_dat=%3Cproquest_RIE%3E3107266874%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107266874&rft_id=info:pmid/&rft_ieee_id=10664443&rfr_iscdi=true |