Spatial Reconstruction Based on Spectral Metric for Hyperspectral Image Classification

We present a hyperspectral image (HSI) classification method based on spatial reconstruction to alleviate the influences of view changes to HSI encoding, and it mainly contains a spatial reconstruction mechanism, a feature representation network (FRN), and an auxiliary branch. The spatial reconstruc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5
Hauptverfasser: Fang, Jie, Zhong, Yulu, Cao, Xiaoqian, Wang, Dianwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 21
creator Fang, Jie
Zhong, Yulu
Cao, Xiaoqian
Wang, Dianwei
description We present a hyperspectral image (HSI) classification method based on spatial reconstruction to alleviate the influences of view changes to HSI encoding, and it mainly contains a spatial reconstruction mechanism, a feature representation network (FRN), and an auxiliary branch. The spatial reconstruction mechanism based on spectral metric unifies image patches with the same entities and different neighbor distributions to an identical cube, while the FRN based on soft band selection adaptively emphasizes informative spectral bands and suppresses redundant ones in the coding phase, and these two modules can form spatial distribution-insensitive data space and noise-robust discriminative feature vector and further improve the classification performance. Besides, the auxiliary branch based on the decoupling strategy ensures the latent relationships among neighbor pixels of the original patch, and it also highlights the relative importance of the center pixel. In addition, the experimental results on three public datasets demonstrate the superiority of the proposed method.
doi_str_mv 10.1109/LGRS.2024.3454216
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2024_3454216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10664443</ieee_id><sourcerecordid>3107266874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-4cb4bf69c8bf003fdeaa0c19d4170f3ffaa7a02f273214ccdf80283aa4f614f43</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWKsPIHhY8Lw1k2ST7FGLtoWK0Kp4C9NsIlva7pqkh769u7SCp_lhvn8GPkJugY4AaPkwnyyWI0aZGHFRCAbyjAygKHROCwXnfRZFXpT665JcxbimHam1GpDPZYupxk22cLbZxRT2NtXNLnvC6KqsC8vW2RQ64NWlUNvMNyGbHloX4t9itsVvl403GGPta4t9_5pceNxEd3OaQ_Lx8vw-nubzt8ls_DjPLSiZcmFXYuVlafXKU8p95RCphbISoKjn3iMqpMwzxRkIayuvKdMcUXgJwgs-JPfHu21ofvYuJrNu9mHXvTQcqGJSatVTcKRsaGIMzps21FsMBwPU9PpMr8_0-sxJX9e5O3Zq59w_XkohBOe_u1JtPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107266874</pqid></control><display><type>article</type><title>Spatial Reconstruction Based on Spectral Metric for Hyperspectral Image Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Fang, Jie ; Zhong, Yulu ; Cao, Xiaoqian ; Wang, Dianwei</creator><creatorcontrib>Fang, Jie ; Zhong, Yulu ; Cao, Xiaoqian ; Wang, Dianwei</creatorcontrib><description>We present a hyperspectral image (HSI) classification method based on spatial reconstruction to alleviate the influences of view changes to HSI encoding, and it mainly contains a spatial reconstruction mechanism, a feature representation network (FRN), and an auxiliary branch. The spatial reconstruction mechanism based on spectral metric unifies image patches with the same entities and different neighbor distributions to an identical cube, while the FRN based on soft band selection adaptively emphasizes informative spectral bands and suppresses redundant ones in the coding phase, and these two modules can form spatial distribution-insensitive data space and noise-robust discriminative feature vector and further improve the classification performance. Besides, the auxiliary branch based on the decoupling strategy ensures the latent relationships among neighbor pixels of the original patch, and it also highlights the relative importance of the center pixel. In addition, the experimental results on three public datasets demonstrate the superiority of the proposed method.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2024.3454216</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Convolution ; Convolutional neural networks ; Decoupling ; Hyperspectral image (HSI) classification ; Hyperspectral imaging ; Image classification ; Image coding ; Image processing ; Image reconstruction ; Mathematical models ; Measurement ; Pixels ; soft band selection ; Spatial distribution ; spatial reconstruction ; Spectral bands ; spectral metric ; Vectors</subject><ispartof>IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-4cb4bf69c8bf003fdeaa0c19d4170f3ffaa7a02f273214ccdf80283aa4f614f43</cites><orcidid>0000-0002-8325-3905 ; 0000-0002-6707-988X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10664443$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10664443$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fang, Jie</creatorcontrib><creatorcontrib>Zhong, Yulu</creatorcontrib><creatorcontrib>Cao, Xiaoqian</creatorcontrib><creatorcontrib>Wang, Dianwei</creatorcontrib><title>Spatial Reconstruction Based on Spectral Metric for Hyperspectral Image Classification</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>We present a hyperspectral image (HSI) classification method based on spatial reconstruction to alleviate the influences of view changes to HSI encoding, and it mainly contains a spatial reconstruction mechanism, a feature representation network (FRN), and an auxiliary branch. The spatial reconstruction mechanism based on spectral metric unifies image patches with the same entities and different neighbor distributions to an identical cube, while the FRN based on soft band selection adaptively emphasizes informative spectral bands and suppresses redundant ones in the coding phase, and these two modules can form spatial distribution-insensitive data space and noise-robust discriminative feature vector and further improve the classification performance. Besides, the auxiliary branch based on the decoupling strategy ensures the latent relationships among neighbor pixels of the original patch, and it also highlights the relative importance of the center pixel. In addition, the experimental results on three public datasets demonstrate the superiority of the proposed method.</description><subject>Classification</subject><subject>Convolution</subject><subject>Convolutional neural networks</subject><subject>Decoupling</subject><subject>Hyperspectral image (HSI) classification</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Image coding</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Pixels</subject><subject>soft band selection</subject><subject>Spatial distribution</subject><subject>spatial reconstruction</subject><subject>Spectral bands</subject><subject>spectral metric</subject><subject>Vectors</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFKAzEQhoMoWKsPIHhY8Lw1k2ST7FGLtoWK0Kp4C9NsIlva7pqkh769u7SCp_lhvn8GPkJugY4AaPkwnyyWI0aZGHFRCAbyjAygKHROCwXnfRZFXpT665JcxbimHam1GpDPZYupxk22cLbZxRT2NtXNLnvC6KqsC8vW2RQ64NWlUNvMNyGbHloX4t9itsVvl403GGPta4t9_5pceNxEd3OaQ_Lx8vw-nubzt8ls_DjPLSiZcmFXYuVlafXKU8p95RCphbISoKjn3iMqpMwzxRkIayuvKdMcUXgJwgs-JPfHu21ofvYuJrNu9mHXvTQcqGJSatVTcKRsaGIMzps21FsMBwPU9PpMr8_0-sxJX9e5O3Zq59w_XkohBOe_u1JtPg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Fang, Jie</creator><creator>Zhong, Yulu</creator><creator>Cao, Xiaoqian</creator><creator>Wang, Dianwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8325-3905</orcidid><orcidid>https://orcid.org/0000-0002-6707-988X</orcidid></search><sort><creationdate>2024</creationdate><title>Spatial Reconstruction Based on Spectral Metric for Hyperspectral Image Classification</title><author>Fang, Jie ; Zhong, Yulu ; Cao, Xiaoqian ; Wang, Dianwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-4cb4bf69c8bf003fdeaa0c19d4170f3ffaa7a02f273214ccdf80283aa4f614f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Convolution</topic><topic>Convolutional neural networks</topic><topic>Decoupling</topic><topic>Hyperspectral image (HSI) classification</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Image coding</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Pixels</topic><topic>soft band selection</topic><topic>Spatial distribution</topic><topic>spatial reconstruction</topic><topic>Spectral bands</topic><topic>spectral metric</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Jie</creatorcontrib><creatorcontrib>Zhong, Yulu</creatorcontrib><creatorcontrib>Cao, Xiaoqian</creatorcontrib><creatorcontrib>Wang, Dianwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fang, Jie</au><au>Zhong, Yulu</au><au>Cao, Xiaoqian</au><au>Wang, Dianwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Reconstruction Based on Spectral Metric for Hyperspectral Image Classification</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>We present a hyperspectral image (HSI) classification method based on spatial reconstruction to alleviate the influences of view changes to HSI encoding, and it mainly contains a spatial reconstruction mechanism, a feature representation network (FRN), and an auxiliary branch. The spatial reconstruction mechanism based on spectral metric unifies image patches with the same entities and different neighbor distributions to an identical cube, while the FRN based on soft band selection adaptively emphasizes informative spectral bands and suppresses redundant ones in the coding phase, and these two modules can form spatial distribution-insensitive data space and noise-robust discriminative feature vector and further improve the classification performance. Besides, the auxiliary branch based on the decoupling strategy ensures the latent relationships among neighbor pixels of the original patch, and it also highlights the relative importance of the center pixel. In addition, the experimental results on three public datasets demonstrate the superiority of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2024.3454216</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8325-3905</orcidid><orcidid>https://orcid.org/0000-0002-6707-988X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2024_3454216
source IEEE Electronic Library (IEL)
subjects Classification
Convolution
Convolutional neural networks
Decoupling
Hyperspectral image (HSI) classification
Hyperspectral imaging
Image classification
Image coding
Image processing
Image reconstruction
Mathematical models
Measurement
Pixels
soft band selection
Spatial distribution
spatial reconstruction
Spectral bands
spectral metric
Vectors
title Spatial Reconstruction Based on Spectral Metric for Hyperspectral Image Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Reconstruction%20Based%20on%20Spectral%20Metric%20for%20Hyperspectral%20Image%20Classification&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Fang,%20Jie&rft.date=2024&rft.volume=21&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2024.3454216&rft_dat=%3Cproquest_RIE%3E3107266874%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107266874&rft_id=info:pmid/&rft_ieee_id=10664443&rfr_iscdi=true