FRCFNet: Feature Reassembly and Context Information Fusion Network for Road Extraction
Existing road extraction methods based on very high resolution (VHR) satellite imagery suffer from insufficient multidimensional feature expression and difficulty capturing global context. We propose a grouping multidimensional feature reassembly (GMFR) module, performing channel, height, and width...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 21 |
creator | Wang, Haijuan Bai, Lin Xue, Danni Chowdhuray Momi, Moslema Ye, Zhen Quan, Siwen |
description | Existing road extraction methods based on very high resolution (VHR) satellite imagery suffer from insufficient multidimensional feature expression and difficulty capturing global context. We propose a grouping multidimensional feature reassembly (GMFR) module, performing channel, height, and width reassembly of multiscale features between network layers via gating to focus on valid information. Given the distinct geometric structure of roads, we propose a novel module, multidirectional context information fusion (MCIF), utilizing four strip convolutions to capture the long-distance context in various directions within VHR images. It aggregates global information through two pooling branches. Based on these, we designed a road extraction network, FRCFNet, with an encoder-decoder structure and skip connections. The proposed network efficiently fuses multiscale features while capturing global context from various directions and reducing complexity. Experimental results show that the proposed method achieves 68.97% and 80.23\%~F1 -score on CHN6-CUG and DeepGlobe datasets, respectively, outperforming other comparison methods. The code will be posted at https://github.com/CHD-IPAC/FRCFNet . |
doi_str_mv | 10.1109/LGRS.2024.3401728 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2024_3401728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10531763</ieee_id><sourcerecordid>3059516941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-e7848237d9d3194f2cc0179a4704d243df29297ef6ddad0076540a8ca13b9f433</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1n5vEmyzdWigK6wfeQrrJQmu7qUkW23_vLu3B0wzM884MDwC3GE0wRuphMaveJgQRNqEMYUHkGRhhzmWGuMDnQ894xpX8ugRXMa5RT0opRuCzrIryxaVHWDqTuuBg5UyMbrvcHKBpLSx8m9w-wXnb-LA1aeVbWHZxKH3s14dv2A9g5Y2F030Kph6Qa3DRmE10N6c6Bh_l9L14zhavs3nxtMhqwvKUOSGZJFRYZSlWrCF13T-vDBOIWcKobYgiSrgmt9ZYhETOGTKyNpguVcMoHYP7495d8D-di0mvfRfa_qSmiCuOc8VwT-EjVQcfY3CN3oXV1oSDxkgP-vSgTw_69Elfn7k7ZlbOuX88p1jklP4BzpNrBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059516941</pqid></control><display><type>article</type><title>FRCFNet: Feature Reassembly and Context Information Fusion Network for Road Extraction</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Haijuan ; Bai, Lin ; Xue, Danni ; Chowdhuray Momi, Moslema ; Ye, Zhen ; Quan, Siwen</creator><creatorcontrib>Wang, Haijuan ; Bai, Lin ; Xue, Danni ; Chowdhuray Momi, Moslema ; Ye, Zhen ; Quan, Siwen</creatorcontrib><description>Existing road extraction methods based on very high resolution (VHR) satellite imagery suffer from insufficient multidimensional feature expression and difficulty capturing global context. We propose a grouping multidimensional feature reassembly (GMFR) module, performing channel, height, and width reassembly of multiscale features between network layers via gating to focus on valid information. Given the distinct geometric structure of roads, we propose a novel module, multidirectional context information fusion (MCIF), utilizing four strip convolutions to capture the long-distance context in various directions within VHR images. It aggregates global information through two pooling branches. Based on these, we designed a road extraction network, FRCFNet, with an encoder-decoder structure and skip connections. The proposed network efficiently fuses multiscale features while capturing global context from various directions and reducing complexity. Experimental results show that the proposed method achieves 68.97% and <inline-formula> <tex-math notation="LaTeX">80.23\%~F1 </tex-math></inline-formula>-score on CHN6-CUG and DeepGlobe datasets, respectively, outperforming other comparison methods. The code will be posted at https://github.com/CHD-IPAC/FRCFNet .</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2024.3401728</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Channel gating ; Context ; Data integration ; Data mining ; Decoding ; Feature extraction ; Image resolution ; Information processing ; Modules ; road extraction ; Roads ; Roads & highways ; Satellite imagery ; Satellite images ; semantic segmentation ; Semantics ; Strips ; very high resolution (VHR) satellite images</subject><ispartof>IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-e7848237d9d3194f2cc0179a4704d243df29297ef6ddad0076540a8ca13b9f433</cites><orcidid>0000-0002-9910-7742 ; 0000-0001-7579-937X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10531763$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10531763$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Haijuan</creatorcontrib><creatorcontrib>Bai, Lin</creatorcontrib><creatorcontrib>Xue, Danni</creatorcontrib><creatorcontrib>Chowdhuray Momi, Moslema</creatorcontrib><creatorcontrib>Ye, Zhen</creatorcontrib><creatorcontrib>Quan, Siwen</creatorcontrib><title>FRCFNet: Feature Reassembly and Context Information Fusion Network for Road Extraction</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Existing road extraction methods based on very high resolution (VHR) satellite imagery suffer from insufficient multidimensional feature expression and difficulty capturing global context. We propose a grouping multidimensional feature reassembly (GMFR) module, performing channel, height, and width reassembly of multiscale features between network layers via gating to focus on valid information. Given the distinct geometric structure of roads, we propose a novel module, multidirectional context information fusion (MCIF), utilizing four strip convolutions to capture the long-distance context in various directions within VHR images. It aggregates global information through two pooling branches. Based on these, we designed a road extraction network, FRCFNet, with an encoder-decoder structure and skip connections. The proposed network efficiently fuses multiscale features while capturing global context from various directions and reducing complexity. Experimental results show that the proposed method achieves 68.97% and <inline-formula> <tex-math notation="LaTeX">80.23\%~F1 </tex-math></inline-formula>-score on CHN6-CUG and DeepGlobe datasets, respectively, outperforming other comparison methods. The code will be posted at https://github.com/CHD-IPAC/FRCFNet .</description><subject>Channel gating</subject><subject>Context</subject><subject>Data integration</subject><subject>Data mining</subject><subject>Decoding</subject><subject>Feature extraction</subject><subject>Image resolution</subject><subject>Information processing</subject><subject>Modules</subject><subject>road extraction</subject><subject>Roads</subject><subject>Roads & highways</subject><subject>Satellite imagery</subject><subject>Satellite images</subject><subject>semantic segmentation</subject><subject>Semantics</subject><subject>Strips</subject><subject>very high resolution (VHR) satellite images</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1n5vEmyzdWigK6wfeQrrJQmu7qUkW23_vLu3B0wzM884MDwC3GE0wRuphMaveJgQRNqEMYUHkGRhhzmWGuMDnQ894xpX8ugRXMa5RT0opRuCzrIryxaVHWDqTuuBg5UyMbrvcHKBpLSx8m9w-wXnb-LA1aeVbWHZxKH3s14dv2A9g5Y2F030Kph6Qa3DRmE10N6c6Bh_l9L14zhavs3nxtMhqwvKUOSGZJFRYZSlWrCF13T-vDBOIWcKobYgiSrgmt9ZYhETOGTKyNpguVcMoHYP7495d8D-di0mvfRfa_qSmiCuOc8VwT-EjVQcfY3CN3oXV1oSDxkgP-vSgTw_69Elfn7k7ZlbOuX88p1jklP4BzpNrBA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wang, Haijuan</creator><creator>Bai, Lin</creator><creator>Xue, Danni</creator><creator>Chowdhuray Momi, Moslema</creator><creator>Ye, Zhen</creator><creator>Quan, Siwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9910-7742</orcidid><orcidid>https://orcid.org/0000-0001-7579-937X</orcidid></search><sort><creationdate>2024</creationdate><title>FRCFNet: Feature Reassembly and Context Information Fusion Network for Road Extraction</title><author>Wang, Haijuan ; Bai, Lin ; Xue, Danni ; Chowdhuray Momi, Moslema ; Ye, Zhen ; Quan, Siwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-e7848237d9d3194f2cc0179a4704d243df29297ef6ddad0076540a8ca13b9f433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Channel gating</topic><topic>Context</topic><topic>Data integration</topic><topic>Data mining</topic><topic>Decoding</topic><topic>Feature extraction</topic><topic>Image resolution</topic><topic>Information processing</topic><topic>Modules</topic><topic>road extraction</topic><topic>Roads</topic><topic>Roads & highways</topic><topic>Satellite imagery</topic><topic>Satellite images</topic><topic>semantic segmentation</topic><topic>Semantics</topic><topic>Strips</topic><topic>very high resolution (VHR) satellite images</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haijuan</creatorcontrib><creatorcontrib>Bai, Lin</creatorcontrib><creatorcontrib>Xue, Danni</creatorcontrib><creatorcontrib>Chowdhuray Momi, Moslema</creatorcontrib><creatorcontrib>Ye, Zhen</creatorcontrib><creatorcontrib>Quan, Siwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Haijuan</au><au>Bai, Lin</au><au>Xue, Danni</au><au>Chowdhuray Momi, Moslema</au><au>Ye, Zhen</au><au>Quan, Siwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FRCFNet: Feature Reassembly and Context Information Fusion Network for Road Extraction</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Existing road extraction methods based on very high resolution (VHR) satellite imagery suffer from insufficient multidimensional feature expression and difficulty capturing global context. We propose a grouping multidimensional feature reassembly (GMFR) module, performing channel, height, and width reassembly of multiscale features between network layers via gating to focus on valid information. Given the distinct geometric structure of roads, we propose a novel module, multidirectional context information fusion (MCIF), utilizing four strip convolutions to capture the long-distance context in various directions within VHR images. It aggregates global information through two pooling branches. Based on these, we designed a road extraction network, FRCFNet, with an encoder-decoder structure and skip connections. The proposed network efficiently fuses multiscale features while capturing global context from various directions and reducing complexity. Experimental results show that the proposed method achieves 68.97% and <inline-formula> <tex-math notation="LaTeX">80.23\%~F1 </tex-math></inline-formula>-score on CHN6-CUG and DeepGlobe datasets, respectively, outperforming other comparison methods. The code will be posted at https://github.com/CHD-IPAC/FRCFNet .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2024.3401728</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9910-7742</orcidid><orcidid>https://orcid.org/0000-0001-7579-937X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2024_3401728 |
source | IEEE Electronic Library (IEL) |
subjects | Channel gating Context Data integration Data mining Decoding Feature extraction Image resolution Information processing Modules road extraction Roads Roads & highways Satellite imagery Satellite images semantic segmentation Semantics Strips very high resolution (VHR) satellite images |
title | FRCFNet: Feature Reassembly and Context Information Fusion Network for Road Extraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FRCFNet:%20Feature%20Reassembly%20and%20Context%20Information%20Fusion%20Network%20for%20Road%20Extraction&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Wang,%20Haijuan&rft.date=2024&rft.volume=21&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2024.3401728&rft_dat=%3Cproquest_RIE%3E3059516941%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059516941&rft_id=info:pmid/&rft_ieee_id=10531763&rfr_iscdi=true |