FRCFNet: Feature Reassembly and Context Information Fusion Network for Road Extraction

Existing road extraction methods based on very high resolution (VHR) satellite imagery suffer from insufficient multidimensional feature expression and difficulty capturing global context. We propose a grouping multidimensional feature reassembly (GMFR) module, performing channel, height, and width...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5
Hauptverfasser: Wang, Haijuan, Bai, Lin, Xue, Danni, Chowdhuray Momi, Moslema, Ye, Zhen, Quan, Siwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 21
creator Wang, Haijuan
Bai, Lin
Xue, Danni
Chowdhuray Momi, Moslema
Ye, Zhen
Quan, Siwen
description Existing road extraction methods based on very high resolution (VHR) satellite imagery suffer from insufficient multidimensional feature expression and difficulty capturing global context. We propose a grouping multidimensional feature reassembly (GMFR) module, performing channel, height, and width reassembly of multiscale features between network layers via gating to focus on valid information. Given the distinct geometric structure of roads, we propose a novel module, multidirectional context information fusion (MCIF), utilizing four strip convolutions to capture the long-distance context in various directions within VHR images. It aggregates global information through two pooling branches. Based on these, we designed a road extraction network, FRCFNet, with an encoder-decoder structure and skip connections. The proposed network efficiently fuses multiscale features while capturing global context from various directions and reducing complexity. Experimental results show that the proposed method achieves 68.97% and 80.23\%~F1 -score on CHN6-CUG and DeepGlobe datasets, respectively, outperforming other comparison methods. The code will be posted at https://github.com/CHD-IPAC/FRCFNet .
doi_str_mv 10.1109/LGRS.2024.3401728
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2024_3401728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10531763</ieee_id><sourcerecordid>3059516941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-e7848237d9d3194f2cc0179a4704d243df29297ef6ddad0076540a8ca13b9f433</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1n5vEmyzdWigK6wfeQrrJQmu7qUkW23_vLu3B0wzM884MDwC3GE0wRuphMaveJgQRNqEMYUHkGRhhzmWGuMDnQ894xpX8ugRXMa5RT0opRuCzrIryxaVHWDqTuuBg5UyMbrvcHKBpLSx8m9w-wXnb-LA1aeVbWHZxKH3s14dv2A9g5Y2F030Kph6Qa3DRmE10N6c6Bh_l9L14zhavs3nxtMhqwvKUOSGZJFRYZSlWrCF13T-vDBOIWcKobYgiSrgmt9ZYhETOGTKyNpguVcMoHYP7495d8D-di0mvfRfa_qSmiCuOc8VwT-EjVQcfY3CN3oXV1oSDxkgP-vSgTw_69Elfn7k7ZlbOuX88p1jklP4BzpNrBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059516941</pqid></control><display><type>article</type><title>FRCFNet: Feature Reassembly and Context Information Fusion Network for Road Extraction</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Haijuan ; Bai, Lin ; Xue, Danni ; Chowdhuray Momi, Moslema ; Ye, Zhen ; Quan, Siwen</creator><creatorcontrib>Wang, Haijuan ; Bai, Lin ; Xue, Danni ; Chowdhuray Momi, Moslema ; Ye, Zhen ; Quan, Siwen</creatorcontrib><description>Existing road extraction methods based on very high resolution (VHR) satellite imagery suffer from insufficient multidimensional feature expression and difficulty capturing global context. We propose a grouping multidimensional feature reassembly (GMFR) module, performing channel, height, and width reassembly of multiscale features between network layers via gating to focus on valid information. Given the distinct geometric structure of roads, we propose a novel module, multidirectional context information fusion (MCIF), utilizing four strip convolutions to capture the long-distance context in various directions within VHR images. It aggregates global information through two pooling branches. Based on these, we designed a road extraction network, FRCFNet, with an encoder-decoder structure and skip connections. The proposed network efficiently fuses multiscale features while capturing global context from various directions and reducing complexity. Experimental results show that the proposed method achieves 68.97% and &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;80.23\%~F1 &lt;/tex-math&gt;&lt;/inline-formula&gt;-score on CHN6-CUG and DeepGlobe datasets, respectively, outperforming other comparison methods. The code will be posted at https://github.com/CHD-IPAC/FRCFNet .</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2024.3401728</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Channel gating ; Context ; Data integration ; Data mining ; Decoding ; Feature extraction ; Image resolution ; Information processing ; Modules ; road extraction ; Roads ; Roads &amp; highways ; Satellite imagery ; Satellite images ; semantic segmentation ; Semantics ; Strips ; very high resolution (VHR) satellite images</subject><ispartof>IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-e7848237d9d3194f2cc0179a4704d243df29297ef6ddad0076540a8ca13b9f433</cites><orcidid>0000-0002-9910-7742 ; 0000-0001-7579-937X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10531763$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10531763$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Haijuan</creatorcontrib><creatorcontrib>Bai, Lin</creatorcontrib><creatorcontrib>Xue, Danni</creatorcontrib><creatorcontrib>Chowdhuray Momi, Moslema</creatorcontrib><creatorcontrib>Ye, Zhen</creatorcontrib><creatorcontrib>Quan, Siwen</creatorcontrib><title>FRCFNet: Feature Reassembly and Context Information Fusion Network for Road Extraction</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Existing road extraction methods based on very high resolution (VHR) satellite imagery suffer from insufficient multidimensional feature expression and difficulty capturing global context. We propose a grouping multidimensional feature reassembly (GMFR) module, performing channel, height, and width reassembly of multiscale features between network layers via gating to focus on valid information. Given the distinct geometric structure of roads, we propose a novel module, multidirectional context information fusion (MCIF), utilizing four strip convolutions to capture the long-distance context in various directions within VHR images. It aggregates global information through two pooling branches. Based on these, we designed a road extraction network, FRCFNet, with an encoder-decoder structure and skip connections. The proposed network efficiently fuses multiscale features while capturing global context from various directions and reducing complexity. Experimental results show that the proposed method achieves 68.97% and &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;80.23\%~F1 &lt;/tex-math&gt;&lt;/inline-formula&gt;-score on CHN6-CUG and DeepGlobe datasets, respectively, outperforming other comparison methods. The code will be posted at https://github.com/CHD-IPAC/FRCFNet .</description><subject>Channel gating</subject><subject>Context</subject><subject>Data integration</subject><subject>Data mining</subject><subject>Decoding</subject><subject>Feature extraction</subject><subject>Image resolution</subject><subject>Information processing</subject><subject>Modules</subject><subject>road extraction</subject><subject>Roads</subject><subject>Roads &amp; highways</subject><subject>Satellite imagery</subject><subject>Satellite images</subject><subject>semantic segmentation</subject><subject>Semantics</subject><subject>Strips</subject><subject>very high resolution (VHR) satellite images</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1n5vEmyzdWigK6wfeQrrJQmu7qUkW23_vLu3B0wzM884MDwC3GE0wRuphMaveJgQRNqEMYUHkGRhhzmWGuMDnQ894xpX8ugRXMa5RT0opRuCzrIryxaVHWDqTuuBg5UyMbrvcHKBpLSx8m9w-wXnb-LA1aeVbWHZxKH3s14dv2A9g5Y2F030Kph6Qa3DRmE10N6c6Bh_l9L14zhavs3nxtMhqwvKUOSGZJFRYZSlWrCF13T-vDBOIWcKobYgiSrgmt9ZYhETOGTKyNpguVcMoHYP7495d8D-di0mvfRfa_qSmiCuOc8VwT-EjVQcfY3CN3oXV1oSDxkgP-vSgTw_69Elfn7k7ZlbOuX88p1jklP4BzpNrBA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wang, Haijuan</creator><creator>Bai, Lin</creator><creator>Xue, Danni</creator><creator>Chowdhuray Momi, Moslema</creator><creator>Ye, Zhen</creator><creator>Quan, Siwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9910-7742</orcidid><orcidid>https://orcid.org/0000-0001-7579-937X</orcidid></search><sort><creationdate>2024</creationdate><title>FRCFNet: Feature Reassembly and Context Information Fusion Network for Road Extraction</title><author>Wang, Haijuan ; Bai, Lin ; Xue, Danni ; Chowdhuray Momi, Moslema ; Ye, Zhen ; Quan, Siwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-e7848237d9d3194f2cc0179a4704d243df29297ef6ddad0076540a8ca13b9f433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Channel gating</topic><topic>Context</topic><topic>Data integration</topic><topic>Data mining</topic><topic>Decoding</topic><topic>Feature extraction</topic><topic>Image resolution</topic><topic>Information processing</topic><topic>Modules</topic><topic>road extraction</topic><topic>Roads</topic><topic>Roads &amp; highways</topic><topic>Satellite imagery</topic><topic>Satellite images</topic><topic>semantic segmentation</topic><topic>Semantics</topic><topic>Strips</topic><topic>very high resolution (VHR) satellite images</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haijuan</creatorcontrib><creatorcontrib>Bai, Lin</creatorcontrib><creatorcontrib>Xue, Danni</creatorcontrib><creatorcontrib>Chowdhuray Momi, Moslema</creatorcontrib><creatorcontrib>Ye, Zhen</creatorcontrib><creatorcontrib>Quan, Siwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Haijuan</au><au>Bai, Lin</au><au>Xue, Danni</au><au>Chowdhuray Momi, Moslema</au><au>Ye, Zhen</au><au>Quan, Siwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FRCFNet: Feature Reassembly and Context Information Fusion Network for Road Extraction</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Existing road extraction methods based on very high resolution (VHR) satellite imagery suffer from insufficient multidimensional feature expression and difficulty capturing global context. We propose a grouping multidimensional feature reassembly (GMFR) module, performing channel, height, and width reassembly of multiscale features between network layers via gating to focus on valid information. Given the distinct geometric structure of roads, we propose a novel module, multidirectional context information fusion (MCIF), utilizing four strip convolutions to capture the long-distance context in various directions within VHR images. It aggregates global information through two pooling branches. Based on these, we designed a road extraction network, FRCFNet, with an encoder-decoder structure and skip connections. The proposed network efficiently fuses multiscale features while capturing global context from various directions and reducing complexity. Experimental results show that the proposed method achieves 68.97% and &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;80.23\%~F1 &lt;/tex-math&gt;&lt;/inline-formula&gt;-score on CHN6-CUG and DeepGlobe datasets, respectively, outperforming other comparison methods. The code will be posted at https://github.com/CHD-IPAC/FRCFNet .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2024.3401728</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9910-7742</orcidid><orcidid>https://orcid.org/0000-0001-7579-937X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2024_3401728
source IEEE Electronic Library (IEL)
subjects Channel gating
Context
Data integration
Data mining
Decoding
Feature extraction
Image resolution
Information processing
Modules
road extraction
Roads
Roads & highways
Satellite imagery
Satellite images
semantic segmentation
Semantics
Strips
very high resolution (VHR) satellite images
title FRCFNet: Feature Reassembly and Context Information Fusion Network for Road Extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FRCFNet:%20Feature%20Reassembly%20and%20Context%20Information%20Fusion%20Network%20for%20Road%20Extraction&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Wang,%20Haijuan&rft.date=2024&rft.volume=21&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2024.3401728&rft_dat=%3Cproquest_RIE%3E3059516941%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059516941&rft_id=info:pmid/&rft_ieee_id=10531763&rfr_iscdi=true