Density Prediction from Full Waveform Inversion with Gravity Gradient Constraints

Adequate density information is essential for geophysical reservoir prediction and lithological interpretation. Achieving optimal density results through full waveform inversion (FWI) poses a consistent challenge. The low wavenumber component essential for density, easily derived from gravity data,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2024-01, Vol.21, p.1-1
Hauptverfasser: Liu, Hongying, Wu, Guochen, Li, Qingyang, Shan, Junzhen, Yang, Sen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 21
creator Liu, Hongying
Wu, Guochen
Li, Qingyang
Shan, Junzhen
Yang, Sen
description Adequate density information is essential for geophysical reservoir prediction and lithological interpretation. Achieving optimal density results through full waveform inversion (FWI) poses a consistent challenge. The low wavenumber component essential for density, easily derived from gravity data, is often unavailable in seismic inversion. Integrating gravity information into the seismic field can provide long wavelength density information and reduce the feasible solution space. Hence, we propose a joint gravity-seismic inversion method and develop a joint inversion objective function. We start by inverting the low wavenumber component for density using gravity data, followed by FWI with gravity gradient constraints for the high wavenumber information. Numerical examples show that our method can improve numerical accuracy and recover an accurate density model, providing petrophysical guidance for resource exploration.
doi_str_mv 10.1109/LGRS.2024.3397889
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2024_3397889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10521647</ieee_id><sourcerecordid>3055179092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-4914e431edc46bf379c6d141caae1e762fc75a4d058caf8abe934b42ec07d33e3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1n5vkKNXWQsFv9BbS7CymtLuapJX-e3dpD57egXneGXgQuqRkRCkxN_Ppy-uIESZGnBultTlCAyqlLohU9LifhSyk0Z-n6CylJelIrdUAPd9Bk0Le4acIVfA5tA2uY7vGk81qhT_cFuo2rvGs2UJM_fI35C88jW7bl7qsAjQZj9sm5ehCk9M5OqndKsHFIYfofXL_Nn4o5o_T2fh2XngmylwIQwUITqHyolzUXBlfVlRQ7xxQUCWrvZJOVERq72rtFmC4WAgGnqiKc-BDdL2_-x3bnw2kbJftJjbdS8uJlFQZYlhH0T3lY5tShNp-x7B2cWcpsb0525uzvTl7MNd1rvadAAD_eMloKRT_A1zoa50</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055179092</pqid></control><display><type>article</type><title>Density Prediction from Full Waveform Inversion with Gravity Gradient Constraints</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Hongying ; Wu, Guochen ; Li, Qingyang ; Shan, Junzhen ; Yang, Sen</creator><creatorcontrib>Liu, Hongying ; Wu, Guochen ; Li, Qingyang ; Shan, Junzhen ; Yang, Sen</creatorcontrib><description>Adequate density information is essential for geophysical reservoir prediction and lithological interpretation. Achieving optimal density results through full waveform inversion (FWI) poses a consistent challenge. The low wavenumber component essential for density, easily derived from gravity data, is often unavailable in seismic inversion. Integrating gravity information into the seismic field can provide long wavelength density information and reduce the feasible solution space. Hence, we propose a joint gravity-seismic inversion method and develop a joint inversion objective function. We start by inverting the low wavenumber component for density using gravity data, followed by FWI with gravity gradient constraints for the high wavenumber information. Numerical examples show that our method can improve numerical accuracy and recover an accurate density model, providing petrophysical guidance for resource exploration.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2024.3397889</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Components ; Data models ; Density ; full waveform inversion ; Gravity ; Gravity data ; gravity gradient ; joint inversion ; Kernel ; Linear programming ; Lithology ; Mathematical models ; Objective function ; Resource exploration ; Seismic surveys ; Sensitivity ; Solution space ; Tensors ; Waveforms ; Wavelength ; Wavelengths</subject><ispartof>IEEE geoscience and remote sensing letters, 2024-01, Vol.21, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-4914e431edc46bf379c6d141caae1e762fc75a4d058caf8abe934b42ec07d33e3</cites><orcidid>0009-0007-4238-1381 ; 0000-0003-2997-0812 ; 0000-0001-8086-5722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10521647$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10521647$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Hongying</creatorcontrib><creatorcontrib>Wu, Guochen</creatorcontrib><creatorcontrib>Li, Qingyang</creatorcontrib><creatorcontrib>Shan, Junzhen</creatorcontrib><creatorcontrib>Yang, Sen</creatorcontrib><title>Density Prediction from Full Waveform Inversion with Gravity Gradient Constraints</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Adequate density information is essential for geophysical reservoir prediction and lithological interpretation. Achieving optimal density results through full waveform inversion (FWI) poses a consistent challenge. The low wavenumber component essential for density, easily derived from gravity data, is often unavailable in seismic inversion. Integrating gravity information into the seismic field can provide long wavelength density information and reduce the feasible solution space. Hence, we propose a joint gravity-seismic inversion method and develop a joint inversion objective function. We start by inverting the low wavenumber component for density using gravity data, followed by FWI with gravity gradient constraints for the high wavenumber information. Numerical examples show that our method can improve numerical accuracy and recover an accurate density model, providing petrophysical guidance for resource exploration.</description><subject>Components</subject><subject>Data models</subject><subject>Density</subject><subject>full waveform inversion</subject><subject>Gravity</subject><subject>Gravity data</subject><subject>gravity gradient</subject><subject>joint inversion</subject><subject>Kernel</subject><subject>Linear programming</subject><subject>Lithology</subject><subject>Mathematical models</subject><subject>Objective function</subject><subject>Resource exploration</subject><subject>Seismic surveys</subject><subject>Sensitivity</subject><subject>Solution space</subject><subject>Tensors</subject><subject>Waveforms</subject><subject>Wavelength</subject><subject>Wavelengths</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1n5vkKNXWQsFv9BbS7CymtLuapJX-e3dpD57egXneGXgQuqRkRCkxN_Ppy-uIESZGnBultTlCAyqlLohU9LifhSyk0Z-n6CylJelIrdUAPd9Bk0Le4acIVfA5tA2uY7vGk81qhT_cFuo2rvGs2UJM_fI35C88jW7bl7qsAjQZj9sm5ehCk9M5OqndKsHFIYfofXL_Nn4o5o_T2fh2XngmylwIQwUITqHyolzUXBlfVlRQ7xxQUCWrvZJOVERq72rtFmC4WAgGnqiKc-BDdL2_-x3bnw2kbJftJjbdS8uJlFQZYlhH0T3lY5tShNp-x7B2cWcpsb0525uzvTl7MNd1rvadAAD_eMloKRT_A1zoa50</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Liu, Hongying</creator><creator>Wu, Guochen</creator><creator>Li, Qingyang</creator><creator>Shan, Junzhen</creator><creator>Yang, Sen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0007-4238-1381</orcidid><orcidid>https://orcid.org/0000-0003-2997-0812</orcidid><orcidid>https://orcid.org/0000-0001-8086-5722</orcidid></search><sort><creationdate>20240101</creationdate><title>Density Prediction from Full Waveform Inversion with Gravity Gradient Constraints</title><author>Liu, Hongying ; Wu, Guochen ; Li, Qingyang ; Shan, Junzhen ; Yang, Sen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-4914e431edc46bf379c6d141caae1e762fc75a4d058caf8abe934b42ec07d33e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Components</topic><topic>Data models</topic><topic>Density</topic><topic>full waveform inversion</topic><topic>Gravity</topic><topic>Gravity data</topic><topic>gravity gradient</topic><topic>joint inversion</topic><topic>Kernel</topic><topic>Linear programming</topic><topic>Lithology</topic><topic>Mathematical models</topic><topic>Objective function</topic><topic>Resource exploration</topic><topic>Seismic surveys</topic><topic>Sensitivity</topic><topic>Solution space</topic><topic>Tensors</topic><topic>Waveforms</topic><topic>Wavelength</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hongying</creatorcontrib><creatorcontrib>Wu, Guochen</creatorcontrib><creatorcontrib>Li, Qingyang</creatorcontrib><creatorcontrib>Shan, Junzhen</creatorcontrib><creatorcontrib>Yang, Sen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Hongying</au><au>Wu, Guochen</au><au>Li, Qingyang</au><au>Shan, Junzhen</au><au>Yang, Sen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density Prediction from Full Waveform Inversion with Gravity Gradient Constraints</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Adequate density information is essential for geophysical reservoir prediction and lithological interpretation. Achieving optimal density results through full waveform inversion (FWI) poses a consistent challenge. The low wavenumber component essential for density, easily derived from gravity data, is often unavailable in seismic inversion. Integrating gravity information into the seismic field can provide long wavelength density information and reduce the feasible solution space. Hence, we propose a joint gravity-seismic inversion method and develop a joint inversion objective function. We start by inverting the low wavenumber component for density using gravity data, followed by FWI with gravity gradient constraints for the high wavenumber information. Numerical examples show that our method can improve numerical accuracy and recover an accurate density model, providing petrophysical guidance for resource exploration.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2024.3397889</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0007-4238-1381</orcidid><orcidid>https://orcid.org/0000-0003-2997-0812</orcidid><orcidid>https://orcid.org/0000-0001-8086-5722</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2024-01, Vol.21, p.1-1
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2024_3397889
source IEEE Electronic Library (IEL)
subjects Components
Data models
Density
full waveform inversion
Gravity
Gravity data
gravity gradient
joint inversion
Kernel
Linear programming
Lithology
Mathematical models
Objective function
Resource exploration
Seismic surveys
Sensitivity
Solution space
Tensors
Waveforms
Wavelength
Wavelengths
title Density Prediction from Full Waveform Inversion with Gravity Gradient Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20Prediction%20from%20Full%20Waveform%20Inversion%20with%20Gravity%20Gradient%20Constraints&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Liu,%20Hongying&rft.date=2024-01-01&rft.volume=21&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2024.3397889&rft_dat=%3Cproquest_RIE%3E3055179092%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055179092&rft_id=info:pmid/&rft_ieee_id=10521647&rfr_iscdi=true