Integrating Soil Spectral Library and PRISMA Data to Estimate Soil Organic Carbon in Crop Lands
The increasing demand for precise soil organic carbon (SOC) monitoring in croplands, crucial for food security (SDG 2), has led to the exploration of fusing soil spectral libraries (SSL) with hyperspectral sensing data for SOC estimation. However, the widespread adoption of SSL for SOC estimation fa...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2024-01, Vol.21, p.1-1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 21 |
creator | Reddy, Bonthu Sandeep Shwetha, H R |
description | The increasing demand for precise soil organic carbon (SOC) monitoring in croplands, crucial for food security (SDG 2), has led to the exploration of fusing soil spectral libraries (SSL) with hyperspectral sensing data for SOC estimation. However, the widespread adoption of SSL for SOC estimation faces challenges, particularly in developing nations, due to inconsistent calibration libraries and reliable estimation models. Further, SSL rely on regular soil sample collection and spectral data recording using spectroradiometers, which is impractical in agricultural-predominant countries like India with limited time for sample collection between crop rotations. To address this challenge, we developed synthesised SSL in lab conditions and integrated it with hyperspectral data using Machine Learning (ML) algorithms to bridge the gap between synthesised SSL and hyperspectral data for local-scale SOC mapping. This approach was tested by mapping SOC in Mysore, India, using spectroradiometer hyperspectral measurements and PRISMA sensor data. The proposed approach and synthesised SSL exhibited better performance, with R2 prediction accuracies of 0.92 and 0.79 and RMSE values of 2.31 g/kg and 9.91 g/kg, respectively, for PRISMA and lab spectroscopy data. These results highlight the potential of synthesised SSL for SOC prediction in alluvial soils, leveraging local datasets and hyperspectral data. Our future work will expand the synthesis approach to new Indian study areas, particularly those with alluvial soil origins, further enhancing the applicability of this methodology for SOC estimation and aiding food security efforts. |
doi_str_mv | 10.1109/LGRS.2024.3374824 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2024_3374824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10463056</ieee_id><sourcerecordid>2995152602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-1b2e436eba01ea29b06defce3ed0652f7a11ae486fc7b42819d7cf3db6733fa83</originalsourceid><addsrcrecordid>eNpNkM9LwzAUgIMoOKd_gOAh4Lkzv5seR9U5qExWBW8hbV9Hx2xrkh3239vSHTzlHb7vPfIhdE_JglKSPGWrbb5ghIkF57HQTFygGZVSR0TG9HKchYxkor-v0Y33ezKQWsczZNZtgJ2zoWl3OO-aA857KIOzB5w1hbPuhG1b4Y_tOn9f4mcbLA4dfvGh-bEBJmPjdrZtSpxaV3Qtblqcuq7H2SD6W3RV24OHu_M7R1-vL5_pW5RtVut0mUUlEypEtGAguILCEgqWJQVRFdQlcKiIkqyOLaUWhFZ1GReCaZpUcVnzqlAx57XVfI4ep729636P4IPZd0fXDicNSxJJJVOEDRSdqNJ13juoTe-Gj7iTocSMHc3Y0Ywdzbnj4DxMTgMA_3ihOJGK_wEadm59</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2995152602</pqid></control><display><type>article</type><title>Integrating Soil Spectral Library and PRISMA Data to Estimate Soil Organic Carbon in Crop Lands</title><source>IEEE Electronic Library (IEL)</source><creator>Reddy, Bonthu Sandeep ; Shwetha, H R</creator><creatorcontrib>Reddy, Bonthu Sandeep ; Shwetha, H R</creatorcontrib><description>The increasing demand for precise soil organic carbon (SOC) monitoring in croplands, crucial for food security (SDG 2), has led to the exploration of fusing soil spectral libraries (SSL) with hyperspectral sensing data for SOC estimation. However, the widespread adoption of SSL for SOC estimation faces challenges, particularly in developing nations, due to inconsistent calibration libraries and reliable estimation models. Further, SSL rely on regular soil sample collection and spectral data recording using spectroradiometers, which is impractical in agricultural-predominant countries like India with limited time for sample collection between crop rotations. To address this challenge, we developed synthesised SSL in lab conditions and integrated it with hyperspectral data using Machine Learning (ML) algorithms to bridge the gap between synthesised SSL and hyperspectral data for local-scale SOC mapping. This approach was tested by mapping SOC in Mysore, India, using spectroradiometer hyperspectral measurements and PRISMA sensor data. The proposed approach and synthesised SSL exhibited better performance, with R2 prediction accuracies of 0.92 and 0.79 and RMSE values of 2.31 g/kg and 9.91 g/kg, respectively, for PRISMA and lab spectroscopy data. These results highlight the potential of synthesised SSL for SOC prediction in alluvial soils, leveraging local datasets and hyperspectral data. Our future work will expand the synthesis approach to new Indian study areas, particularly those with alluvial soil origins, further enhancing the applicability of this methodology for SOC estimation and aiding food security efforts.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2024.3374824</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agricultural land ; Agricultural practices ; Algorithms ; Alluvial soils ; Analytical methods ; Calibration ; Crop rotation ; Crops ; Data recording ; Developing countries ; Food security ; Hyperspectral imaging ; Hyperspectral Remote Sensing ; India ; LDCs ; Libraries ; Machine learning ; Machine Learning (ML) ; Mapping ; Organic carbon ; Organic soils ; Performance prediction ; PRISMA ; Reflectivity ; Soil ; Soil organic carbon (SOC) ; Soil Spectral Library (SSL) ; Spectroradiometer ; Spectroradiometers ; Spectroscopy ; Sustainable Development Goals ; Synthesis</subject><ispartof>IEEE geoscience and remote sensing letters, 2024-01, Vol.21, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-1b2e436eba01ea29b06defce3ed0652f7a11ae486fc7b42819d7cf3db6733fa83</cites><orcidid>0000-0003-3930-651X ; 0000-0003-1199-8550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10463056$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10463056$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Reddy, Bonthu Sandeep</creatorcontrib><creatorcontrib>Shwetha, H R</creatorcontrib><title>Integrating Soil Spectral Library and PRISMA Data to Estimate Soil Organic Carbon in Crop Lands</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>The increasing demand for precise soil organic carbon (SOC) monitoring in croplands, crucial for food security (SDG 2), has led to the exploration of fusing soil spectral libraries (SSL) with hyperspectral sensing data for SOC estimation. However, the widespread adoption of SSL for SOC estimation faces challenges, particularly in developing nations, due to inconsistent calibration libraries and reliable estimation models. Further, SSL rely on regular soil sample collection and spectral data recording using spectroradiometers, which is impractical in agricultural-predominant countries like India with limited time for sample collection between crop rotations. To address this challenge, we developed synthesised SSL in lab conditions and integrated it with hyperspectral data using Machine Learning (ML) algorithms to bridge the gap between synthesised SSL and hyperspectral data for local-scale SOC mapping. This approach was tested by mapping SOC in Mysore, India, using spectroradiometer hyperspectral measurements and PRISMA sensor data. The proposed approach and synthesised SSL exhibited better performance, with R2 prediction accuracies of 0.92 and 0.79 and RMSE values of 2.31 g/kg and 9.91 g/kg, respectively, for PRISMA and lab spectroscopy data. These results highlight the potential of synthesised SSL for SOC prediction in alluvial soils, leveraging local datasets and hyperspectral data. Our future work will expand the synthesis approach to new Indian study areas, particularly those with alluvial soil origins, further enhancing the applicability of this methodology for SOC estimation and aiding food security efforts.</description><subject>Agricultural land</subject><subject>Agricultural practices</subject><subject>Algorithms</subject><subject>Alluvial soils</subject><subject>Analytical methods</subject><subject>Calibration</subject><subject>Crop rotation</subject><subject>Crops</subject><subject>Data recording</subject><subject>Developing countries</subject><subject>Food security</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral Remote Sensing</subject><subject>India</subject><subject>LDCs</subject><subject>Libraries</subject><subject>Machine learning</subject><subject>Machine Learning (ML)</subject><subject>Mapping</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>Performance prediction</subject><subject>PRISMA</subject><subject>Reflectivity</subject><subject>Soil</subject><subject>Soil organic carbon (SOC)</subject><subject>Soil Spectral Library (SSL)</subject><subject>Spectroradiometer</subject><subject>Spectroradiometers</subject><subject>Spectroscopy</subject><subject>Sustainable Development Goals</subject><subject>Synthesis</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAUgIMoOKd_gOAh4Lkzv5seR9U5qExWBW8hbV9Hx2xrkh3239vSHTzlHb7vPfIhdE_JglKSPGWrbb5ghIkF57HQTFygGZVSR0TG9HKchYxkor-v0Y33ezKQWsczZNZtgJ2zoWl3OO-aA857KIOzB5w1hbPuhG1b4Y_tOn9f4mcbLA4dfvGh-bEBJmPjdrZtSpxaV3Qtblqcuq7H2SD6W3RV24OHu_M7R1-vL5_pW5RtVut0mUUlEypEtGAguILCEgqWJQVRFdQlcKiIkqyOLaUWhFZ1GReCaZpUcVnzqlAx57XVfI4ep729636P4IPZd0fXDicNSxJJJVOEDRSdqNJ13juoTe-Gj7iTocSMHc3Y0Ywdzbnj4DxMTgMA_3ihOJGK_wEadm59</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Reddy, Bonthu Sandeep</creator><creator>Shwetha, H R</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3930-651X</orcidid><orcidid>https://orcid.org/0000-0003-1199-8550</orcidid></search><sort><creationdate>20240101</creationdate><title>Integrating Soil Spectral Library and PRISMA Data to Estimate Soil Organic Carbon in Crop Lands</title><author>Reddy, Bonthu Sandeep ; Shwetha, H R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-1b2e436eba01ea29b06defce3ed0652f7a11ae486fc7b42819d7cf3db6733fa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural land</topic><topic>Agricultural practices</topic><topic>Algorithms</topic><topic>Alluvial soils</topic><topic>Analytical methods</topic><topic>Calibration</topic><topic>Crop rotation</topic><topic>Crops</topic><topic>Data recording</topic><topic>Developing countries</topic><topic>Food security</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral Remote Sensing</topic><topic>India</topic><topic>LDCs</topic><topic>Libraries</topic><topic>Machine learning</topic><topic>Machine Learning (ML)</topic><topic>Mapping</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>Performance prediction</topic><topic>PRISMA</topic><topic>Reflectivity</topic><topic>Soil</topic><topic>Soil organic carbon (SOC)</topic><topic>Soil Spectral Library (SSL)</topic><topic>Spectroradiometer</topic><topic>Spectroradiometers</topic><topic>Spectroscopy</topic><topic>Sustainable Development Goals</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddy, Bonthu Sandeep</creatorcontrib><creatorcontrib>Shwetha, H R</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reddy, Bonthu Sandeep</au><au>Shwetha, H R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Soil Spectral Library and PRISMA Data to Estimate Soil Organic Carbon in Crop Lands</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>The increasing demand for precise soil organic carbon (SOC) monitoring in croplands, crucial for food security (SDG 2), has led to the exploration of fusing soil spectral libraries (SSL) with hyperspectral sensing data for SOC estimation. However, the widespread adoption of SSL for SOC estimation faces challenges, particularly in developing nations, due to inconsistent calibration libraries and reliable estimation models. Further, SSL rely on regular soil sample collection and spectral data recording using spectroradiometers, which is impractical in agricultural-predominant countries like India with limited time for sample collection between crop rotations. To address this challenge, we developed synthesised SSL in lab conditions and integrated it with hyperspectral data using Machine Learning (ML) algorithms to bridge the gap between synthesised SSL and hyperspectral data for local-scale SOC mapping. This approach was tested by mapping SOC in Mysore, India, using spectroradiometer hyperspectral measurements and PRISMA sensor data. The proposed approach and synthesised SSL exhibited better performance, with R2 prediction accuracies of 0.92 and 0.79 and RMSE values of 2.31 g/kg and 9.91 g/kg, respectively, for PRISMA and lab spectroscopy data. These results highlight the potential of synthesised SSL for SOC prediction in alluvial soils, leveraging local datasets and hyperspectral data. Our future work will expand the synthesis approach to new Indian study areas, particularly those with alluvial soil origins, further enhancing the applicability of this methodology for SOC estimation and aiding food security efforts.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2024.3374824</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3930-651X</orcidid><orcidid>https://orcid.org/0000-0003-1199-8550</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2024-01, Vol.21, p.1-1 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2024_3374824 |
source | IEEE Electronic Library (IEL) |
subjects | Agricultural land Agricultural practices Algorithms Alluvial soils Analytical methods Calibration Crop rotation Crops Data recording Developing countries Food security Hyperspectral imaging Hyperspectral Remote Sensing India LDCs Libraries Machine learning Machine Learning (ML) Mapping Organic carbon Organic soils Performance prediction PRISMA Reflectivity Soil Soil organic carbon (SOC) Soil Spectral Library (SSL) Spectroradiometer Spectroradiometers Spectroscopy Sustainable Development Goals Synthesis |
title | Integrating Soil Spectral Library and PRISMA Data to Estimate Soil Organic Carbon in Crop Lands |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A59%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Soil%20Spectral%20Library%20and%20PRISMA%20Data%20to%20Estimate%20Soil%20Organic%20Carbon%20in%20Crop%20Lands&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Reddy,%20Bonthu%20Sandeep&rft.date=2024-01-01&rft.volume=21&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2024.3374824&rft_dat=%3Cproquest_RIE%3E2995152602%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2995152602&rft_id=info:pmid/&rft_ieee_id=10463056&rfr_iscdi=true |