Integrating Soil Spectral Library and PRISMA Data to Estimate Soil Organic Carbon in Crop Lands

The increasing demand for precise soil organic carbon (SOC) monitoring in croplands, crucial for food security (SDG 2), has led to the exploration of fusing soil spectral libraries (SSL) with hyperspectral sensing data for SOC estimation. However, the widespread adoption of SSL for SOC estimation fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2024-01, Vol.21, p.1-1
Hauptverfasser: Reddy, Bonthu Sandeep, Shwetha, H R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 21
creator Reddy, Bonthu Sandeep
Shwetha, H R
description The increasing demand for precise soil organic carbon (SOC) monitoring in croplands, crucial for food security (SDG 2), has led to the exploration of fusing soil spectral libraries (SSL) with hyperspectral sensing data for SOC estimation. However, the widespread adoption of SSL for SOC estimation faces challenges, particularly in developing nations, due to inconsistent calibration libraries and reliable estimation models. Further, SSL rely on regular soil sample collection and spectral data recording using spectroradiometers, which is impractical in agricultural-predominant countries like India with limited time for sample collection between crop rotations. To address this challenge, we developed synthesised SSL in lab conditions and integrated it with hyperspectral data using Machine Learning (ML) algorithms to bridge the gap between synthesised SSL and hyperspectral data for local-scale SOC mapping. This approach was tested by mapping SOC in Mysore, India, using spectroradiometer hyperspectral measurements and PRISMA sensor data. The proposed approach and synthesised SSL exhibited better performance, with R2 prediction accuracies of 0.92 and 0.79 and RMSE values of 2.31 g/kg and 9.91 g/kg, respectively, for PRISMA and lab spectroscopy data. These results highlight the potential of synthesised SSL for SOC prediction in alluvial soils, leveraging local datasets and hyperspectral data. Our future work will expand the synthesis approach to new Indian study areas, particularly those with alluvial soil origins, further enhancing the applicability of this methodology for SOC estimation and aiding food security efforts.
doi_str_mv 10.1109/LGRS.2024.3374824
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2024_3374824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10463056</ieee_id><sourcerecordid>2995152602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-1b2e436eba01ea29b06defce3ed0652f7a11ae486fc7b42819d7cf3db6733fa83</originalsourceid><addsrcrecordid>eNpNkM9LwzAUgIMoOKd_gOAh4Lkzv5seR9U5qExWBW8hbV9Hx2xrkh3239vSHTzlHb7vPfIhdE_JglKSPGWrbb5ghIkF57HQTFygGZVSR0TG9HKchYxkor-v0Y33ezKQWsczZNZtgJ2zoWl3OO-aA857KIOzB5w1hbPuhG1b4Y_tOn9f4mcbLA4dfvGh-bEBJmPjdrZtSpxaV3Qtblqcuq7H2SD6W3RV24OHu_M7R1-vL5_pW5RtVut0mUUlEypEtGAguILCEgqWJQVRFdQlcKiIkqyOLaUWhFZ1GReCaZpUcVnzqlAx57XVfI4ep729636P4IPZd0fXDicNSxJJJVOEDRSdqNJ13juoTe-Gj7iTocSMHc3Y0Ywdzbnj4DxMTgMA_3ihOJGK_wEadm59</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2995152602</pqid></control><display><type>article</type><title>Integrating Soil Spectral Library and PRISMA Data to Estimate Soil Organic Carbon in Crop Lands</title><source>IEEE Electronic Library (IEL)</source><creator>Reddy, Bonthu Sandeep ; Shwetha, H R</creator><creatorcontrib>Reddy, Bonthu Sandeep ; Shwetha, H R</creatorcontrib><description>The increasing demand for precise soil organic carbon (SOC) monitoring in croplands, crucial for food security (SDG 2), has led to the exploration of fusing soil spectral libraries (SSL) with hyperspectral sensing data for SOC estimation. However, the widespread adoption of SSL for SOC estimation faces challenges, particularly in developing nations, due to inconsistent calibration libraries and reliable estimation models. Further, SSL rely on regular soil sample collection and spectral data recording using spectroradiometers, which is impractical in agricultural-predominant countries like India with limited time for sample collection between crop rotations. To address this challenge, we developed synthesised SSL in lab conditions and integrated it with hyperspectral data using Machine Learning (ML) algorithms to bridge the gap between synthesised SSL and hyperspectral data for local-scale SOC mapping. This approach was tested by mapping SOC in Mysore, India, using spectroradiometer hyperspectral measurements and PRISMA sensor data. The proposed approach and synthesised SSL exhibited better performance, with R2 prediction accuracies of 0.92 and 0.79 and RMSE values of 2.31 g/kg and 9.91 g/kg, respectively, for PRISMA and lab spectroscopy data. These results highlight the potential of synthesised SSL for SOC prediction in alluvial soils, leveraging local datasets and hyperspectral data. Our future work will expand the synthesis approach to new Indian study areas, particularly those with alluvial soil origins, further enhancing the applicability of this methodology for SOC estimation and aiding food security efforts.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2024.3374824</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agricultural land ; Agricultural practices ; Algorithms ; Alluvial soils ; Analytical methods ; Calibration ; Crop rotation ; Crops ; Data recording ; Developing countries ; Food security ; Hyperspectral imaging ; Hyperspectral Remote Sensing ; India ; LDCs ; Libraries ; Machine learning ; Machine Learning (ML) ; Mapping ; Organic carbon ; Organic soils ; Performance prediction ; PRISMA ; Reflectivity ; Soil ; Soil organic carbon (SOC) ; Soil Spectral Library (SSL) ; Spectroradiometer ; Spectroradiometers ; Spectroscopy ; Sustainable Development Goals ; Synthesis</subject><ispartof>IEEE geoscience and remote sensing letters, 2024-01, Vol.21, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-1b2e436eba01ea29b06defce3ed0652f7a11ae486fc7b42819d7cf3db6733fa83</cites><orcidid>0000-0003-3930-651X ; 0000-0003-1199-8550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10463056$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10463056$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Reddy, Bonthu Sandeep</creatorcontrib><creatorcontrib>Shwetha, H R</creatorcontrib><title>Integrating Soil Spectral Library and PRISMA Data to Estimate Soil Organic Carbon in Crop Lands</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>The increasing demand for precise soil organic carbon (SOC) monitoring in croplands, crucial for food security (SDG 2), has led to the exploration of fusing soil spectral libraries (SSL) with hyperspectral sensing data for SOC estimation. However, the widespread adoption of SSL for SOC estimation faces challenges, particularly in developing nations, due to inconsistent calibration libraries and reliable estimation models. Further, SSL rely on regular soil sample collection and spectral data recording using spectroradiometers, which is impractical in agricultural-predominant countries like India with limited time for sample collection between crop rotations. To address this challenge, we developed synthesised SSL in lab conditions and integrated it with hyperspectral data using Machine Learning (ML) algorithms to bridge the gap between synthesised SSL and hyperspectral data for local-scale SOC mapping. This approach was tested by mapping SOC in Mysore, India, using spectroradiometer hyperspectral measurements and PRISMA sensor data. The proposed approach and synthesised SSL exhibited better performance, with R2 prediction accuracies of 0.92 and 0.79 and RMSE values of 2.31 g/kg and 9.91 g/kg, respectively, for PRISMA and lab spectroscopy data. These results highlight the potential of synthesised SSL for SOC prediction in alluvial soils, leveraging local datasets and hyperspectral data. Our future work will expand the synthesis approach to new Indian study areas, particularly those with alluvial soil origins, further enhancing the applicability of this methodology for SOC estimation and aiding food security efforts.</description><subject>Agricultural land</subject><subject>Agricultural practices</subject><subject>Algorithms</subject><subject>Alluvial soils</subject><subject>Analytical methods</subject><subject>Calibration</subject><subject>Crop rotation</subject><subject>Crops</subject><subject>Data recording</subject><subject>Developing countries</subject><subject>Food security</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral Remote Sensing</subject><subject>India</subject><subject>LDCs</subject><subject>Libraries</subject><subject>Machine learning</subject><subject>Machine Learning (ML)</subject><subject>Mapping</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>Performance prediction</subject><subject>PRISMA</subject><subject>Reflectivity</subject><subject>Soil</subject><subject>Soil organic carbon (SOC)</subject><subject>Soil Spectral Library (SSL)</subject><subject>Spectroradiometer</subject><subject>Spectroradiometers</subject><subject>Spectroscopy</subject><subject>Sustainable Development Goals</subject><subject>Synthesis</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAUgIMoOKd_gOAh4Lkzv5seR9U5qExWBW8hbV9Hx2xrkh3239vSHTzlHb7vPfIhdE_JglKSPGWrbb5ghIkF57HQTFygGZVSR0TG9HKchYxkor-v0Y33ezKQWsczZNZtgJ2zoWl3OO-aA857KIOzB5w1hbPuhG1b4Y_tOn9f4mcbLA4dfvGh-bEBJmPjdrZtSpxaV3Qtblqcuq7H2SD6W3RV24OHu_M7R1-vL5_pW5RtVut0mUUlEypEtGAguILCEgqWJQVRFdQlcKiIkqyOLaUWhFZ1GReCaZpUcVnzqlAx57XVfI4ep729636P4IPZd0fXDicNSxJJJVOEDRSdqNJ13juoTe-Gj7iTocSMHc3Y0Ywdzbnj4DxMTgMA_3ihOJGK_wEadm59</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Reddy, Bonthu Sandeep</creator><creator>Shwetha, H R</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3930-651X</orcidid><orcidid>https://orcid.org/0000-0003-1199-8550</orcidid></search><sort><creationdate>20240101</creationdate><title>Integrating Soil Spectral Library and PRISMA Data to Estimate Soil Organic Carbon in Crop Lands</title><author>Reddy, Bonthu Sandeep ; Shwetha, H R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-1b2e436eba01ea29b06defce3ed0652f7a11ae486fc7b42819d7cf3db6733fa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural land</topic><topic>Agricultural practices</topic><topic>Algorithms</topic><topic>Alluvial soils</topic><topic>Analytical methods</topic><topic>Calibration</topic><topic>Crop rotation</topic><topic>Crops</topic><topic>Data recording</topic><topic>Developing countries</topic><topic>Food security</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral Remote Sensing</topic><topic>India</topic><topic>LDCs</topic><topic>Libraries</topic><topic>Machine learning</topic><topic>Machine Learning (ML)</topic><topic>Mapping</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>Performance prediction</topic><topic>PRISMA</topic><topic>Reflectivity</topic><topic>Soil</topic><topic>Soil organic carbon (SOC)</topic><topic>Soil Spectral Library (SSL)</topic><topic>Spectroradiometer</topic><topic>Spectroradiometers</topic><topic>Spectroscopy</topic><topic>Sustainable Development Goals</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddy, Bonthu Sandeep</creatorcontrib><creatorcontrib>Shwetha, H R</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reddy, Bonthu Sandeep</au><au>Shwetha, H R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Soil Spectral Library and PRISMA Data to Estimate Soil Organic Carbon in Crop Lands</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>The increasing demand for precise soil organic carbon (SOC) monitoring in croplands, crucial for food security (SDG 2), has led to the exploration of fusing soil spectral libraries (SSL) with hyperspectral sensing data for SOC estimation. However, the widespread adoption of SSL for SOC estimation faces challenges, particularly in developing nations, due to inconsistent calibration libraries and reliable estimation models. Further, SSL rely on regular soil sample collection and spectral data recording using spectroradiometers, which is impractical in agricultural-predominant countries like India with limited time for sample collection between crop rotations. To address this challenge, we developed synthesised SSL in lab conditions and integrated it with hyperspectral data using Machine Learning (ML) algorithms to bridge the gap between synthesised SSL and hyperspectral data for local-scale SOC mapping. This approach was tested by mapping SOC in Mysore, India, using spectroradiometer hyperspectral measurements and PRISMA sensor data. The proposed approach and synthesised SSL exhibited better performance, with R2 prediction accuracies of 0.92 and 0.79 and RMSE values of 2.31 g/kg and 9.91 g/kg, respectively, for PRISMA and lab spectroscopy data. These results highlight the potential of synthesised SSL for SOC prediction in alluvial soils, leveraging local datasets and hyperspectral data. Our future work will expand the synthesis approach to new Indian study areas, particularly those with alluvial soil origins, further enhancing the applicability of this methodology for SOC estimation and aiding food security efforts.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2024.3374824</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3930-651X</orcidid><orcidid>https://orcid.org/0000-0003-1199-8550</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2024-01, Vol.21, p.1-1
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2024_3374824
source IEEE Electronic Library (IEL)
subjects Agricultural land
Agricultural practices
Algorithms
Alluvial soils
Analytical methods
Calibration
Crop rotation
Crops
Data recording
Developing countries
Food security
Hyperspectral imaging
Hyperspectral Remote Sensing
India
LDCs
Libraries
Machine learning
Machine Learning (ML)
Mapping
Organic carbon
Organic soils
Performance prediction
PRISMA
Reflectivity
Soil
Soil organic carbon (SOC)
Soil Spectral Library (SSL)
Spectroradiometer
Spectroradiometers
Spectroscopy
Sustainable Development Goals
Synthesis
title Integrating Soil Spectral Library and PRISMA Data to Estimate Soil Organic Carbon in Crop Lands
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A59%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Soil%20Spectral%20Library%20and%20PRISMA%20Data%20to%20Estimate%20Soil%20Organic%20Carbon%20in%20Crop%20Lands&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Reddy,%20Bonthu%20Sandeep&rft.date=2024-01-01&rft.volume=21&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2024.3374824&rft_dat=%3Cproquest_RIE%3E2995152602%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2995152602&rft_id=info:pmid/&rft_ieee_id=10463056&rfr_iscdi=true