Infrared Moving Small Target Detection Based on Consistency of Sparse Trajectory

Infrared search and track (IRST) systems require reliable detection of small targets in complex backgrounds. Outlier based methods are prone to high false positive rates due to the resemblance of point-like background features to small targets. The difference image-based method is an effective appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2023-01, Vol.20, p.1-1
Hauptverfasser: Wu, Mo, Yang, Xiubin, Fu, Zongqiang, He, Haoyang, Du, Jiamin, Xu, Tingting, Tu, Ziming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 20
creator Wu, Mo
Yang, Xiubin
Fu, Zongqiang
He, Haoyang
Du, Jiamin
Xu, Tingting
Tu, Ziming
description Infrared search and track (IRST) systems require reliable detection of small targets in complex backgrounds. Outlier based methods are prone to high false positive rates due to the resemblance of point-like background features to small targets. The difference image-based method is an effective approach for suppressing point-like background interference; however, it has limitations in detecting slow-moving targets. In this letter, a novel sparse trajectory is proposed for moving target detection in IR videos. With a trajectory growing strategy, two kinds of trajectories from difference images, namely short sparse trajectories and long sparse trajectories, are correlated to avoid the slow-moving targets being dismissed. The strategy matches the trajectories based on the sparse trajectory intensity composed of similarity measures and optical flow consistency. Finally, real targets are extracted from candidate trajectories using trajectory filtering. Experimental results show that, in the scene with point-like background features, our method achieves the best detection rate and lowest false alarm compared to state-of-the-art methods.
doi_str_mv 10.1109/LGRS.2023.3257850
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2023_3257850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10073608</ieee_id><sourcerecordid>2790138334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-3d50ef975a90a113006441f7373b786677a1048411051290d59c5c0853db0ed73</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lx18rVJjlq1FiqKreAtpLuzZUu7qclW6L93l3rwNO_heWeYh5BrBiPGwN7NJh_zEQcuRoIrbRSckAFTymSgNDvts1SZsubrnFyktAbg0hg9IO_Tpoo-Yklfw0_drOh86zcbuvBxhS19xBaLtg4NffCpY7owDk2qU4tNcaChovOdjwnpIvp1R4Z4uCRnld8kvPqbQ_L5_LQYv2Szt8l0fD_LCm5lm4lSAVZWK2_BMyYAcilZpYUWS23yXGvPQBrZPacYt1AqW6gCjBLlErDUYkhuj3t3MXzvMbVuHfax6U46ri0wYYSQHcWOVBFDShErt4v11seDY-B6ca4X53px7k9c17k5dmpE_MeDFjkY8QtugGfS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2790138334</pqid></control><display><type>article</type><title>Infrared Moving Small Target Detection Based on Consistency of Sparse Trajectory</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Mo ; Yang, Xiubin ; Fu, Zongqiang ; He, Haoyang ; Du, Jiamin ; Xu, Tingting ; Tu, Ziming</creator><creatorcontrib>Wu, Mo ; Yang, Xiubin ; Fu, Zongqiang ; He, Haoyang ; Du, Jiamin ; Xu, Tingting ; Tu, Ziming</creatorcontrib><description>Infrared search and track (IRST) systems require reliable detection of small targets in complex backgrounds. Outlier based methods are prone to high false positive rates due to the resemblance of point-like background features to small targets. The difference image-based method is an effective approach for suppressing point-like background interference; however, it has limitations in detecting slow-moving targets. In this letter, a novel sparse trajectory is proposed for moving target detection in IR videos. With a trajectory growing strategy, two kinds of trajectories from difference images, namely short sparse trajectories and long sparse trajectories, are correlated to avoid the slow-moving targets being dismissed. The strategy matches the trajectories based on the sparse trajectory intensity composed of similarity measures and optical flow consistency. Finally, real targets are extracted from candidate trajectories using trajectory filtering. Experimental results show that, in the scene with point-like background features, our method achieves the best detection rate and lowest false alarm compared to state-of-the-art methods.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2023.3257850</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Consistency ; Data analysis ; Detection ; False alarms ; Feature extraction ; Geoscience and remote sensing ; Infrared moving small target ; Infrared tracking ; Methods ; Moving targets ; Object detection ; Optical flow ; Optical flow (image analysis) ; optical flow consistency ; Optical variables measurement ; Outliers (statistics) ; similarity measure ; sparse trajectory ; Target detection ; Three-dimensional displays ; Trajectory ; trajectory growth</subject><ispartof>IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-3d50ef975a90a113006441f7373b786677a1048411051290d59c5c0853db0ed73</citedby><cites>FETCH-LOGICAL-c294t-3d50ef975a90a113006441f7373b786677a1048411051290d59c5c0853db0ed73</cites><orcidid>0000-0003-0702-2918 ; 0000-0002-1451-5502 ; 0000-0002-4241-5410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10073608$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10073608$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Mo</creatorcontrib><creatorcontrib>Yang, Xiubin</creatorcontrib><creatorcontrib>Fu, Zongqiang</creatorcontrib><creatorcontrib>He, Haoyang</creatorcontrib><creatorcontrib>Du, Jiamin</creatorcontrib><creatorcontrib>Xu, Tingting</creatorcontrib><creatorcontrib>Tu, Ziming</creatorcontrib><title>Infrared Moving Small Target Detection Based on Consistency of Sparse Trajectory</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Infrared search and track (IRST) systems require reliable detection of small targets in complex backgrounds. Outlier based methods are prone to high false positive rates due to the resemblance of point-like background features to small targets. The difference image-based method is an effective approach for suppressing point-like background interference; however, it has limitations in detecting slow-moving targets. In this letter, a novel sparse trajectory is proposed for moving target detection in IR videos. With a trajectory growing strategy, two kinds of trajectories from difference images, namely short sparse trajectories and long sparse trajectories, are correlated to avoid the slow-moving targets being dismissed. The strategy matches the trajectories based on the sparse trajectory intensity composed of similarity measures and optical flow consistency. Finally, real targets are extracted from candidate trajectories using trajectory filtering. Experimental results show that, in the scene with point-like background features, our method achieves the best detection rate and lowest false alarm compared to state-of-the-art methods.</description><subject>Consistency</subject><subject>Data analysis</subject><subject>Detection</subject><subject>False alarms</subject><subject>Feature extraction</subject><subject>Geoscience and remote sensing</subject><subject>Infrared moving small target</subject><subject>Infrared tracking</subject><subject>Methods</subject><subject>Moving targets</subject><subject>Object detection</subject><subject>Optical flow</subject><subject>Optical flow (image analysis)</subject><subject>optical flow consistency</subject><subject>Optical variables measurement</subject><subject>Outliers (statistics)</subject><subject>similarity measure</subject><subject>sparse trajectory</subject><subject>Target detection</subject><subject>Three-dimensional displays</subject><subject>Trajectory</subject><subject>trajectory growth</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lx18rVJjlq1FiqKreAtpLuzZUu7qclW6L93l3rwNO_heWeYh5BrBiPGwN7NJh_zEQcuRoIrbRSckAFTymSgNDvts1SZsubrnFyktAbg0hg9IO_Tpoo-Yklfw0_drOh86zcbuvBxhS19xBaLtg4NffCpY7owDk2qU4tNcaChovOdjwnpIvp1R4Z4uCRnld8kvPqbQ_L5_LQYv2Szt8l0fD_LCm5lm4lSAVZWK2_BMyYAcilZpYUWS23yXGvPQBrZPacYt1AqW6gCjBLlErDUYkhuj3t3MXzvMbVuHfax6U46ri0wYYSQHcWOVBFDShErt4v11seDY-B6ca4X53px7k9c17k5dmpE_MeDFjkY8QtugGfS</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wu, Mo</creator><creator>Yang, Xiubin</creator><creator>Fu, Zongqiang</creator><creator>He, Haoyang</creator><creator>Du, Jiamin</creator><creator>Xu, Tingting</creator><creator>Tu, Ziming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0702-2918</orcidid><orcidid>https://orcid.org/0000-0002-1451-5502</orcidid><orcidid>https://orcid.org/0000-0002-4241-5410</orcidid></search><sort><creationdate>20230101</creationdate><title>Infrared Moving Small Target Detection Based on Consistency of Sparse Trajectory</title><author>Wu, Mo ; Yang, Xiubin ; Fu, Zongqiang ; He, Haoyang ; Du, Jiamin ; Xu, Tingting ; Tu, Ziming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-3d50ef975a90a113006441f7373b786677a1048411051290d59c5c0853db0ed73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Consistency</topic><topic>Data analysis</topic><topic>Detection</topic><topic>False alarms</topic><topic>Feature extraction</topic><topic>Geoscience and remote sensing</topic><topic>Infrared moving small target</topic><topic>Infrared tracking</topic><topic>Methods</topic><topic>Moving targets</topic><topic>Object detection</topic><topic>Optical flow</topic><topic>Optical flow (image analysis)</topic><topic>optical flow consistency</topic><topic>Optical variables measurement</topic><topic>Outliers (statistics)</topic><topic>similarity measure</topic><topic>sparse trajectory</topic><topic>Target detection</topic><topic>Three-dimensional displays</topic><topic>Trajectory</topic><topic>trajectory growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Mo</creatorcontrib><creatorcontrib>Yang, Xiubin</creatorcontrib><creatorcontrib>Fu, Zongqiang</creatorcontrib><creatorcontrib>He, Haoyang</creatorcontrib><creatorcontrib>Du, Jiamin</creatorcontrib><creatorcontrib>Xu, Tingting</creatorcontrib><creatorcontrib>Tu, Ziming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Mo</au><au>Yang, Xiubin</au><au>Fu, Zongqiang</au><au>He, Haoyang</au><au>Du, Jiamin</au><au>Xu, Tingting</au><au>Tu, Ziming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infrared Moving Small Target Detection Based on Consistency of Sparse Trajectory</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>20</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Infrared search and track (IRST) systems require reliable detection of small targets in complex backgrounds. Outlier based methods are prone to high false positive rates due to the resemblance of point-like background features to small targets. The difference image-based method is an effective approach for suppressing point-like background interference; however, it has limitations in detecting slow-moving targets. In this letter, a novel sparse trajectory is proposed for moving target detection in IR videos. With a trajectory growing strategy, two kinds of trajectories from difference images, namely short sparse trajectories and long sparse trajectories, are correlated to avoid the slow-moving targets being dismissed. The strategy matches the trajectories based on the sparse trajectory intensity composed of similarity measures and optical flow consistency. Finally, real targets are extracted from candidate trajectories using trajectory filtering. Experimental results show that, in the scene with point-like background features, our method achieves the best detection rate and lowest false alarm compared to state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2023.3257850</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0702-2918</orcidid><orcidid>https://orcid.org/0000-0002-1451-5502</orcidid><orcidid>https://orcid.org/0000-0002-4241-5410</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2023_3257850
source IEEE Electronic Library (IEL)
subjects Consistency
Data analysis
Detection
False alarms
Feature extraction
Geoscience and remote sensing
Infrared moving small target
Infrared tracking
Methods
Moving targets
Object detection
Optical flow
Optical flow (image analysis)
optical flow consistency
Optical variables measurement
Outliers (statistics)
similarity measure
sparse trajectory
Target detection
Three-dimensional displays
Trajectory
trajectory growth
title Infrared Moving Small Target Detection Based on Consistency of Sparse Trajectory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T03%3A41%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infrared%20Moving%20Small%20Target%20Detection%20Based%20on%20Consistency%20of%20Sparse%20Trajectory&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Wu,%20Mo&rft.date=2023-01-01&rft.volume=20&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2023.3257850&rft_dat=%3Cproquest_RIE%3E2790138334%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2790138334&rft_id=info:pmid/&rft_ieee_id=10073608&rfr_iscdi=true