Infrared Moving Small Target Detection Based on Consistency of Sparse Trajectory
Infrared search and track (IRST) systems require reliable detection of small targets in complex backgrounds. Outlier based methods are prone to high false positive rates due to the resemblance of point-like background features to small targets. The difference image-based method is an effective appro...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2023-01, Vol.20, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 20 |
creator | Wu, Mo Yang, Xiubin Fu, Zongqiang He, Haoyang Du, Jiamin Xu, Tingting Tu, Ziming |
description | Infrared search and track (IRST) systems require reliable detection of small targets in complex backgrounds. Outlier based methods are prone to high false positive rates due to the resemblance of point-like background features to small targets. The difference image-based method is an effective approach for suppressing point-like background interference; however, it has limitations in detecting slow-moving targets. In this letter, a novel sparse trajectory is proposed for moving target detection in IR videos. With a trajectory growing strategy, two kinds of trajectories from difference images, namely short sparse trajectories and long sparse trajectories, are correlated to avoid the slow-moving targets being dismissed. The strategy matches the trajectories based on the sparse trajectory intensity composed of similarity measures and optical flow consistency. Finally, real targets are extracted from candidate trajectories using trajectory filtering. Experimental results show that, in the scene with point-like background features, our method achieves the best detection rate and lowest false alarm compared to state-of-the-art methods. |
doi_str_mv | 10.1109/LGRS.2023.3257850 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2023_3257850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10073608</ieee_id><sourcerecordid>2790138334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-3d50ef975a90a113006441f7373b786677a1048411051290d59c5c0853db0ed73</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lx18rVJjlq1FiqKreAtpLuzZUu7qclW6L93l3rwNO_heWeYh5BrBiPGwN7NJh_zEQcuRoIrbRSckAFTymSgNDvts1SZsubrnFyktAbg0hg9IO_Tpoo-Yklfw0_drOh86zcbuvBxhS19xBaLtg4NffCpY7owDk2qU4tNcaChovOdjwnpIvp1R4Z4uCRnld8kvPqbQ_L5_LQYv2Szt8l0fD_LCm5lm4lSAVZWK2_BMyYAcilZpYUWS23yXGvPQBrZPacYt1AqW6gCjBLlErDUYkhuj3t3MXzvMbVuHfax6U46ri0wYYSQHcWOVBFDShErt4v11seDY-B6ca4X53px7k9c17k5dmpE_MeDFjkY8QtugGfS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2790138334</pqid></control><display><type>article</type><title>Infrared Moving Small Target Detection Based on Consistency of Sparse Trajectory</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Mo ; Yang, Xiubin ; Fu, Zongqiang ; He, Haoyang ; Du, Jiamin ; Xu, Tingting ; Tu, Ziming</creator><creatorcontrib>Wu, Mo ; Yang, Xiubin ; Fu, Zongqiang ; He, Haoyang ; Du, Jiamin ; Xu, Tingting ; Tu, Ziming</creatorcontrib><description>Infrared search and track (IRST) systems require reliable detection of small targets in complex backgrounds. Outlier based methods are prone to high false positive rates due to the resemblance of point-like background features to small targets. The difference image-based method is an effective approach for suppressing point-like background interference; however, it has limitations in detecting slow-moving targets. In this letter, a novel sparse trajectory is proposed for moving target detection in IR videos. With a trajectory growing strategy, two kinds of trajectories from difference images, namely short sparse trajectories and long sparse trajectories, are correlated to avoid the slow-moving targets being dismissed. The strategy matches the trajectories based on the sparse trajectory intensity composed of similarity measures and optical flow consistency. Finally, real targets are extracted from candidate trajectories using trajectory filtering. Experimental results show that, in the scene with point-like background features, our method achieves the best detection rate and lowest false alarm compared to state-of-the-art methods.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2023.3257850</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Consistency ; Data analysis ; Detection ; False alarms ; Feature extraction ; Geoscience and remote sensing ; Infrared moving small target ; Infrared tracking ; Methods ; Moving targets ; Object detection ; Optical flow ; Optical flow (image analysis) ; optical flow consistency ; Optical variables measurement ; Outliers (statistics) ; similarity measure ; sparse trajectory ; Target detection ; Three-dimensional displays ; Trajectory ; trajectory growth</subject><ispartof>IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-3d50ef975a90a113006441f7373b786677a1048411051290d59c5c0853db0ed73</citedby><cites>FETCH-LOGICAL-c294t-3d50ef975a90a113006441f7373b786677a1048411051290d59c5c0853db0ed73</cites><orcidid>0000-0003-0702-2918 ; 0000-0002-1451-5502 ; 0000-0002-4241-5410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10073608$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10073608$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Mo</creatorcontrib><creatorcontrib>Yang, Xiubin</creatorcontrib><creatorcontrib>Fu, Zongqiang</creatorcontrib><creatorcontrib>He, Haoyang</creatorcontrib><creatorcontrib>Du, Jiamin</creatorcontrib><creatorcontrib>Xu, Tingting</creatorcontrib><creatorcontrib>Tu, Ziming</creatorcontrib><title>Infrared Moving Small Target Detection Based on Consistency of Sparse Trajectory</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Infrared search and track (IRST) systems require reliable detection of small targets in complex backgrounds. Outlier based methods are prone to high false positive rates due to the resemblance of point-like background features to small targets. The difference image-based method is an effective approach for suppressing point-like background interference; however, it has limitations in detecting slow-moving targets. In this letter, a novel sparse trajectory is proposed for moving target detection in IR videos. With a trajectory growing strategy, two kinds of trajectories from difference images, namely short sparse trajectories and long sparse trajectories, are correlated to avoid the slow-moving targets being dismissed. The strategy matches the trajectories based on the sparse trajectory intensity composed of similarity measures and optical flow consistency. Finally, real targets are extracted from candidate trajectories using trajectory filtering. Experimental results show that, in the scene with point-like background features, our method achieves the best detection rate and lowest false alarm compared to state-of-the-art methods.</description><subject>Consistency</subject><subject>Data analysis</subject><subject>Detection</subject><subject>False alarms</subject><subject>Feature extraction</subject><subject>Geoscience and remote sensing</subject><subject>Infrared moving small target</subject><subject>Infrared tracking</subject><subject>Methods</subject><subject>Moving targets</subject><subject>Object detection</subject><subject>Optical flow</subject><subject>Optical flow (image analysis)</subject><subject>optical flow consistency</subject><subject>Optical variables measurement</subject><subject>Outliers (statistics)</subject><subject>similarity measure</subject><subject>sparse trajectory</subject><subject>Target detection</subject><subject>Three-dimensional displays</subject><subject>Trajectory</subject><subject>trajectory growth</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lx18rVJjlq1FiqKreAtpLuzZUu7qclW6L93l3rwNO_heWeYh5BrBiPGwN7NJh_zEQcuRoIrbRSckAFTymSgNDvts1SZsubrnFyktAbg0hg9IO_Tpoo-Yklfw0_drOh86zcbuvBxhS19xBaLtg4NffCpY7owDk2qU4tNcaChovOdjwnpIvp1R4Z4uCRnld8kvPqbQ_L5_LQYv2Szt8l0fD_LCm5lm4lSAVZWK2_BMyYAcilZpYUWS23yXGvPQBrZPacYt1AqW6gCjBLlErDUYkhuj3t3MXzvMbVuHfax6U46ri0wYYSQHcWOVBFDShErt4v11seDY-B6ca4X53px7k9c17k5dmpE_MeDFjkY8QtugGfS</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wu, Mo</creator><creator>Yang, Xiubin</creator><creator>Fu, Zongqiang</creator><creator>He, Haoyang</creator><creator>Du, Jiamin</creator><creator>Xu, Tingting</creator><creator>Tu, Ziming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0702-2918</orcidid><orcidid>https://orcid.org/0000-0002-1451-5502</orcidid><orcidid>https://orcid.org/0000-0002-4241-5410</orcidid></search><sort><creationdate>20230101</creationdate><title>Infrared Moving Small Target Detection Based on Consistency of Sparse Trajectory</title><author>Wu, Mo ; Yang, Xiubin ; Fu, Zongqiang ; He, Haoyang ; Du, Jiamin ; Xu, Tingting ; Tu, Ziming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-3d50ef975a90a113006441f7373b786677a1048411051290d59c5c0853db0ed73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Consistency</topic><topic>Data analysis</topic><topic>Detection</topic><topic>False alarms</topic><topic>Feature extraction</topic><topic>Geoscience and remote sensing</topic><topic>Infrared moving small target</topic><topic>Infrared tracking</topic><topic>Methods</topic><topic>Moving targets</topic><topic>Object detection</topic><topic>Optical flow</topic><topic>Optical flow (image analysis)</topic><topic>optical flow consistency</topic><topic>Optical variables measurement</topic><topic>Outliers (statistics)</topic><topic>similarity measure</topic><topic>sparse trajectory</topic><topic>Target detection</topic><topic>Three-dimensional displays</topic><topic>Trajectory</topic><topic>trajectory growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Mo</creatorcontrib><creatorcontrib>Yang, Xiubin</creatorcontrib><creatorcontrib>Fu, Zongqiang</creatorcontrib><creatorcontrib>He, Haoyang</creatorcontrib><creatorcontrib>Du, Jiamin</creatorcontrib><creatorcontrib>Xu, Tingting</creatorcontrib><creatorcontrib>Tu, Ziming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Mo</au><au>Yang, Xiubin</au><au>Fu, Zongqiang</au><au>He, Haoyang</au><au>Du, Jiamin</au><au>Xu, Tingting</au><au>Tu, Ziming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infrared Moving Small Target Detection Based on Consistency of Sparse Trajectory</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>20</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Infrared search and track (IRST) systems require reliable detection of small targets in complex backgrounds. Outlier based methods are prone to high false positive rates due to the resemblance of point-like background features to small targets. The difference image-based method is an effective approach for suppressing point-like background interference; however, it has limitations in detecting slow-moving targets. In this letter, a novel sparse trajectory is proposed for moving target detection in IR videos. With a trajectory growing strategy, two kinds of trajectories from difference images, namely short sparse trajectories and long sparse trajectories, are correlated to avoid the slow-moving targets being dismissed. The strategy matches the trajectories based on the sparse trajectory intensity composed of similarity measures and optical flow consistency. Finally, real targets are extracted from candidate trajectories using trajectory filtering. Experimental results show that, in the scene with point-like background features, our method achieves the best detection rate and lowest false alarm compared to state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2023.3257850</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0702-2918</orcidid><orcidid>https://orcid.org/0000-0002-1451-5502</orcidid><orcidid>https://orcid.org/0000-0002-4241-5410</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2023_3257850 |
source | IEEE Electronic Library (IEL) |
subjects | Consistency Data analysis Detection False alarms Feature extraction Geoscience and remote sensing Infrared moving small target Infrared tracking Methods Moving targets Object detection Optical flow Optical flow (image analysis) optical flow consistency Optical variables measurement Outliers (statistics) similarity measure sparse trajectory Target detection Three-dimensional displays Trajectory trajectory growth |
title | Infrared Moving Small Target Detection Based on Consistency of Sparse Trajectory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T03%3A41%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infrared%20Moving%20Small%20Target%20Detection%20Based%20on%20Consistency%20of%20Sparse%20Trajectory&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Wu,%20Mo&rft.date=2023-01-01&rft.volume=20&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2023.3257850&rft_dat=%3Cproquest_RIE%3E2790138334%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2790138334&rft_id=info:pmid/&rft_ieee_id=10073608&rfr_iscdi=true |