AMFAN: Adaptive Multiscale Feature Attention Network for Hyperspectral Image Classification

Recently, convolutional neural networks (CNNs) have been widely used in hyperspectral image (HSI) classification with appreciable performance. However, the current CNN-based HSI classification methods have limitations in exploiting the multiscale features and extracting sufficiently discriminative f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Hauptverfasser: Zhang, Shichao, Zhang, Jiahua, Xun, Lan, Wang, Jingwen, Zhang, Da, Wu, Zhenjiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 19
creator Zhang, Shichao
Zhang, Jiahua
Xun, Lan
Wang, Jingwen
Zhang, Da
Wu, Zhenjiang
description Recently, convolutional neural networks (CNNs) have been widely used in hyperspectral image (HSI) classification with appreciable performance. However, the current CNN-based HSI classification methods have limitations in exploiting the multiscale features and extracting sufficiently discriminative features, and usually, adopted dimensionality reduction method such as principal component analysis (PCA) leads to some or all of the physical information of the original band may be lost. To address the above problems, in this letter, we propose an adaptive multiscale feature attention network (AMFAN) for HSI classification. First, we use a band selection algorithm to perform data dimensionality reduction, which helps maintain the original characteristics of the image. Second, different from existing multiscale feature extraction methods that give features of different scales the same degree of importance, we propose an adaptive multiscale feature residual module (AMFRM) to give multiscale features different importance. Finally, due to the input of the HSI classification model based on deep learning (DL) being the patch cube, the only available initial information is the category of the center pixel. However, the patch often contains pixels different from the center pixel category, and existing attention mechanisms do not consider the impact of such pixels on the HSI classification, so we design a novel position attention module (PAM) to calculate the similarity between the center (target) pixel and surrounding pixels and then pay more attention to the pixels with high similarity to the center pixel. Besides, we also use a spectral attention module (SAM) to obtain more discriminative spectral features. Experimental results show that the proposed AMFAN effectively improves the classification accuracy and outperforms the state-of-the-art CNNs.
doi_str_mv 10.1109/LGRS.2022.3193488
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2022_3193488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9837928</ieee_id><sourcerecordid>2697563403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e31dcdceb9f21d9be531d360f94271e2008b104e66493565b3fc4e63c12aa8793</originalsourceid><addsrcrecordid>eNo9kFtLwzAUx4MoOKcfQHwJ-NyZS9MmvpXhLrBN8AKCDyFNT6WzrjVJlX17WzZ8Ohd-_3Pgh9A1JRNKibpbzZ-eJ4wwNuFU8VjKEzSiQsiIiJSeDn0sIqHk2zm68H5LCOuZdITes_Us29zjrDBtqH4Ar7s6VN6aGvAMTOgc4CwE2IWq2eENhN_GfeKycXixb8H5FmxwpsbLL_MBeFob76uysmbAL9FZaWoPV8c6Rq-zh5fpIlo9zpfTbBVZpniIgNPCFhZyVTJaqBxEv-AJKVXMUgqMEJlTEkOSxIqLROS8tP3ELWXGyFTxMbo93G1d892BD3rbdG7Xv9QsUalIeEx4T9EDZV3jvYNSt676Mm6vKdGDQz041INDfXTYZ24OmQoA_nkleaqY5H96Y21p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697563403</pqid></control><display><type>article</type><title>AMFAN: Adaptive Multiscale Feature Attention Network for Hyperspectral Image Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Shichao ; Zhang, Jiahua ; Xun, Lan ; Wang, Jingwen ; Zhang, Da ; Wu, Zhenjiang</creator><creatorcontrib>Zhang, Shichao ; Zhang, Jiahua ; Xun, Lan ; Wang, Jingwen ; Zhang, Da ; Wu, Zhenjiang</creatorcontrib><description>Recently, convolutional neural networks (CNNs) have been widely used in hyperspectral image (HSI) classification with appreciable performance. However, the current CNN-based HSI classification methods have limitations in exploiting the multiscale features and extracting sufficiently discriminative features, and usually, adopted dimensionality reduction method such as principal component analysis (PCA) leads to some or all of the physical information of the original band may be lost. To address the above problems, in this letter, we propose an adaptive multiscale feature attention network (AMFAN) for HSI classification. First, we use a band selection algorithm to perform data dimensionality reduction, which helps maintain the original characteristics of the image. Second, different from existing multiscale feature extraction methods that give features of different scales the same degree of importance, we propose an adaptive multiscale feature residual module (AMFRM) to give multiscale features different importance. Finally, due to the input of the HSI classification model based on deep learning (DL) being the patch cube, the only available initial information is the category of the center pixel. However, the patch often contains pixels different from the center pixel category, and existing attention mechanisms do not consider the impact of such pixels on the HSI classification, so we design a novel position attention module (PAM) to calculate the similarity between the center (target) pixel and surrounding pixels and then pay more attention to the pixels with high similarity to the center pixel. Besides, we also use a spectral attention module (SAM) to obtain more discriminative spectral features. Experimental results show that the proposed AMFAN effectively improves the classification accuracy and outperforms the state-of-the-art CNNs.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2022.3193488</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive multiscale feature attention network (AMFAN) ; Algorithms ; Artificial neural networks ; band selection ; Classification ; Classification algorithms ; Deep learning ; deep learning (DL) ; Dimensionality reduction ; Feature extraction ; hyperspectral image (HSI) classification ; Hyperspectral imaging ; Image classification ; IP networks ; Machine learning ; Methods ; Modules ; Neural networks ; Pixels ; Principal components analysis ; Reduction ; Semantics ; Similarity ; Solid modeling ; Spatial resolution</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e31dcdceb9f21d9be531d360f94271e2008b104e66493565b3fc4e63c12aa8793</citedby><cites>FETCH-LOGICAL-c293t-e31dcdceb9f21d9be531d360f94271e2008b104e66493565b3fc4e63c12aa8793</cites><orcidid>0000-0001-6329-5537 ; 0000-0002-2894-9627 ; 0000-0002-5972-5474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9837928$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9837928$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Shichao</creatorcontrib><creatorcontrib>Zhang, Jiahua</creatorcontrib><creatorcontrib>Xun, Lan</creatorcontrib><creatorcontrib>Wang, Jingwen</creatorcontrib><creatorcontrib>Zhang, Da</creatorcontrib><creatorcontrib>Wu, Zhenjiang</creatorcontrib><title>AMFAN: Adaptive Multiscale Feature Attention Network for Hyperspectral Image Classification</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Recently, convolutional neural networks (CNNs) have been widely used in hyperspectral image (HSI) classification with appreciable performance. However, the current CNN-based HSI classification methods have limitations in exploiting the multiscale features and extracting sufficiently discriminative features, and usually, adopted dimensionality reduction method such as principal component analysis (PCA) leads to some or all of the physical information of the original band may be lost. To address the above problems, in this letter, we propose an adaptive multiscale feature attention network (AMFAN) for HSI classification. First, we use a band selection algorithm to perform data dimensionality reduction, which helps maintain the original characteristics of the image. Second, different from existing multiscale feature extraction methods that give features of different scales the same degree of importance, we propose an adaptive multiscale feature residual module (AMFRM) to give multiscale features different importance. Finally, due to the input of the HSI classification model based on deep learning (DL) being the patch cube, the only available initial information is the category of the center pixel. However, the patch often contains pixels different from the center pixel category, and existing attention mechanisms do not consider the impact of such pixels on the HSI classification, so we design a novel position attention module (PAM) to calculate the similarity between the center (target) pixel and surrounding pixels and then pay more attention to the pixels with high similarity to the center pixel. Besides, we also use a spectral attention module (SAM) to obtain more discriminative spectral features. Experimental results show that the proposed AMFAN effectively improves the classification accuracy and outperforms the state-of-the-art CNNs.</description><subject>Adaptive multiscale feature attention network (AMFAN)</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>band selection</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Deep learning</subject><subject>deep learning (DL)</subject><subject>Dimensionality reduction</subject><subject>Feature extraction</subject><subject>hyperspectral image (HSI) classification</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>IP networks</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Pixels</subject><subject>Principal components analysis</subject><subject>Reduction</subject><subject>Semantics</subject><subject>Similarity</subject><subject>Solid modeling</subject><subject>Spatial resolution</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFtLwzAUx4MoOKcfQHwJ-NyZS9MmvpXhLrBN8AKCDyFNT6WzrjVJlX17WzZ8Ohd-_3Pgh9A1JRNKibpbzZ-eJ4wwNuFU8VjKEzSiQsiIiJSeDn0sIqHk2zm68H5LCOuZdITes_Us29zjrDBtqH4Ar7s6VN6aGvAMTOgc4CwE2IWq2eENhN_GfeKycXixb8H5FmxwpsbLL_MBeFob76uysmbAL9FZaWoPV8c6Rq-zh5fpIlo9zpfTbBVZpniIgNPCFhZyVTJaqBxEv-AJKVXMUgqMEJlTEkOSxIqLROS8tP3ELWXGyFTxMbo93G1d892BD3rbdG7Xv9QsUalIeEx4T9EDZV3jvYNSt676Mm6vKdGDQz041INDfXTYZ24OmQoA_nkleaqY5H96Y21p</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhang, Shichao</creator><creator>Zhang, Jiahua</creator><creator>Xun, Lan</creator><creator>Wang, Jingwen</creator><creator>Zhang, Da</creator><creator>Wu, Zhenjiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6329-5537</orcidid><orcidid>https://orcid.org/0000-0002-2894-9627</orcidid><orcidid>https://orcid.org/0000-0002-5972-5474</orcidid></search><sort><creationdate>2022</creationdate><title>AMFAN: Adaptive Multiscale Feature Attention Network for Hyperspectral Image Classification</title><author>Zhang, Shichao ; Zhang, Jiahua ; Xun, Lan ; Wang, Jingwen ; Zhang, Da ; Wu, Zhenjiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e31dcdceb9f21d9be531d360f94271e2008b104e66493565b3fc4e63c12aa8793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive multiscale feature attention network (AMFAN)</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>band selection</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Deep learning</topic><topic>deep learning (DL)</topic><topic>Dimensionality reduction</topic><topic>Feature extraction</topic><topic>hyperspectral image (HSI) classification</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>IP networks</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Pixels</topic><topic>Principal components analysis</topic><topic>Reduction</topic><topic>Semantics</topic><topic>Similarity</topic><topic>Solid modeling</topic><topic>Spatial resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shichao</creatorcontrib><creatorcontrib>Zhang, Jiahua</creatorcontrib><creatorcontrib>Xun, Lan</creatorcontrib><creatorcontrib>Wang, Jingwen</creatorcontrib><creatorcontrib>Zhang, Da</creatorcontrib><creatorcontrib>Wu, Zhenjiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Shichao</au><au>Zhang, Jiahua</au><au>Xun, Lan</au><au>Wang, Jingwen</au><au>Zhang, Da</au><au>Wu, Zhenjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AMFAN: Adaptive Multiscale Feature Attention Network for Hyperspectral Image Classification</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Recently, convolutional neural networks (CNNs) have been widely used in hyperspectral image (HSI) classification with appreciable performance. However, the current CNN-based HSI classification methods have limitations in exploiting the multiscale features and extracting sufficiently discriminative features, and usually, adopted dimensionality reduction method such as principal component analysis (PCA) leads to some or all of the physical information of the original band may be lost. To address the above problems, in this letter, we propose an adaptive multiscale feature attention network (AMFAN) for HSI classification. First, we use a band selection algorithm to perform data dimensionality reduction, which helps maintain the original characteristics of the image. Second, different from existing multiscale feature extraction methods that give features of different scales the same degree of importance, we propose an adaptive multiscale feature residual module (AMFRM) to give multiscale features different importance. Finally, due to the input of the HSI classification model based on deep learning (DL) being the patch cube, the only available initial information is the category of the center pixel. However, the patch often contains pixels different from the center pixel category, and existing attention mechanisms do not consider the impact of such pixels on the HSI classification, so we design a novel position attention module (PAM) to calculate the similarity between the center (target) pixel and surrounding pixels and then pay more attention to the pixels with high similarity to the center pixel. Besides, we also use a spectral attention module (SAM) to obtain more discriminative spectral features. Experimental results show that the proposed AMFAN effectively improves the classification accuracy and outperforms the state-of-the-art CNNs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2022.3193488</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6329-5537</orcidid><orcidid>https://orcid.org/0000-0002-2894-9627</orcidid><orcidid>https://orcid.org/0000-0002-5972-5474</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2022_3193488
source IEEE Electronic Library (IEL)
subjects Adaptive multiscale feature attention network (AMFAN)
Algorithms
Artificial neural networks
band selection
Classification
Classification algorithms
Deep learning
deep learning (DL)
Dimensionality reduction
Feature extraction
hyperspectral image (HSI) classification
Hyperspectral imaging
Image classification
IP networks
Machine learning
Methods
Modules
Neural networks
Pixels
Principal components analysis
Reduction
Semantics
Similarity
Solid modeling
Spatial resolution
title AMFAN: Adaptive Multiscale Feature Attention Network for Hyperspectral Image Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AMFAN:%20Adaptive%20Multiscale%20Feature%20Attention%20Network%20for%20Hyperspectral%20Image%20Classification&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Zhang,%20Shichao&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2022.3193488&rft_dat=%3Cproquest_RIE%3E2697563403%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697563403&rft_id=info:pmid/&rft_ieee_id=9837928&rfr_iscdi=true