Few-Shot Scene Classification Using Auxiliary Objectives and Transductive Inference
Few-shot learning features the capability of generalizing from very few examples. To realize few-shot scene classification of optical remote sensing images, we propose a two-stage framework that first learns a general-purpose representation and then propagates knowledge in a transductive paradigm. C...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 19 |
creator | Ji, Hong Yang, Hong Gao, Zhi Li, Can Wan, Yu Cui, Jinqiang |
description | Few-shot learning features the capability of generalizing from very few examples. To realize few-shot scene classification of optical remote sensing images, we propose a two-stage framework that first learns a general-purpose representation and then propagates knowledge in a transductive paradigm. Concretely, the first stage jointly learns a semantic class prediction task as well as two auxiliary objectives in a multitask model. Therein, rotation prediction estimates the 2-D transformation of an input, and contrastive prediction aims to pull together the positive pairs while pushing apart the negative pairs. The second stage aims to find an expected prototype having the minimal distance to all samples within the same class. In particular, label propagation (LP) is applied to make joint prediction for both labeled and unlabeled data. Then, the labeled set is expanded by those pseudo-labeled samples, thereby forming a rectified prototype to perform nearest-neighbor classification better. Extensive experiments on standard benchmarks, including Remote sensing image scene classification dataset with 45 classes, published by Northwestern Polytechnical University (NWPU-RESISC45), Aerial Image Dataset (AID), and Remote sensing image scene classification dataset with 19 classes, published by Wuhan University (WHU-RS-19), demonstrate that our method works effectively and achieves the best performance that significantly outperforms many state-of-the-art approaches. |
doi_str_mv | 10.1109/LGRS.2022.3190925 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2022_3190925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9829871</ieee_id><sourcerecordid>2692814410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f0ac58e08fba2a620d0200daa0672464e32c98059a627235aab3a329af3cea333</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQLwEPG-dJJvd5FiKrYVCwW3BW0izs5pSs3Wz659v79YWTzPMvDeP-RFyy2DEGOiHxey5GHHgfCSYBs3lGRkwKVUCMmfnhz6VidTq5ZJcxbgF4KlS-YAUU_xKire6pYXDgHSyszH6yjvb-jrQdfThlY67b7_ztvmhy80WXes_MVIbSrpqbIhl9zeh81Bhg8HhNbmo7C7izakOyXr6uJo8JYvlbD4ZLxLHtWiTCqyTCkFVG8ttxqEEDlBaC1nO0yxFwZ1WIHW_y7mQ1m6EFVzbSji0QoghuT_e3Tf1R4exNdu6a0IfaXimuWJpyqBXsaPKNXWMDVZm3_j3_hnDwBzYmQM7c2BnTux6z93R4xHxX68V1ypn4hfW92q8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692814410</pqid></control><display><type>article</type><title>Few-Shot Scene Classification Using Auxiliary Objectives and Transductive Inference</title><source>IEEE/IET Electronic Library</source><creator>Ji, Hong ; Yang, Hong ; Gao, Zhi ; Li, Can ; Wan, Yu ; Cui, Jinqiang</creator><creatorcontrib>Ji, Hong ; Yang, Hong ; Gao, Zhi ; Li, Can ; Wan, Yu ; Cui, Jinqiang</creatorcontrib><description>Few-shot learning features the capability of generalizing from very few examples. To realize few-shot scene classification of optical remote sensing images, we propose a two-stage framework that first learns a general-purpose representation and then propagates knowledge in a transductive paradigm. Concretely, the first stage jointly learns a semantic class prediction task as well as two auxiliary objectives in a multitask model. Therein, rotation prediction estimates the 2-D transformation of an input, and contrastive prediction aims to pull together the positive pairs while pushing apart the negative pairs. The second stage aims to find an expected prototype having the minimal distance to all samples within the same class. In particular, label propagation (LP) is applied to make joint prediction for both labeled and unlabeled data. Then, the labeled set is expanded by those pseudo-labeled samples, thereby forming a rectified prototype to perform nearest-neighbor classification better. Extensive experiments on standard benchmarks, including Remote sensing image scene classification dataset with 45 classes, published by Northwestern Polytechnical University (NWPU-RESISC45), Aerial Image Dataset (AID), and Remote sensing image scene classification dataset with 19 classes, published by Wuhan University (WHU-RS-19), demonstrate that our method works effectively and achieves the best performance that significantly outperforms many state-of-the-art approaches.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2022.3190925</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Benchmarks ; Classification ; Datasets ; Feature extraction ; Few-shot scene classification ; Image classification ; Knowledge representation ; label propagation (LP) ; Nearest-neighbor ; optical remote sensing image ; Optical sensors ; Predictions ; pretext task ; Prototypes ; rectified prototype ; Remote sensing ; Semantics ; Task analysis ; Training ; transductive inference</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f0ac58e08fba2a620d0200daa0672464e32c98059a627235aab3a329af3cea333</citedby><cites>FETCH-LOGICAL-c293t-f0ac58e08fba2a620d0200daa0672464e32c98059a627235aab3a329af3cea333</cites><orcidid>0000-0002-6850-5721 ; 0000-0003-0812-4334 ; 0000-0001-5725-1431 ; 0000-0003-1649-9611 ; 0000-0003-3325-1183 ; 0000-0002-7833-1876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9829871$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9829871$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ji, Hong</creatorcontrib><creatorcontrib>Yang, Hong</creatorcontrib><creatorcontrib>Gao, Zhi</creatorcontrib><creatorcontrib>Li, Can</creatorcontrib><creatorcontrib>Wan, Yu</creatorcontrib><creatorcontrib>Cui, Jinqiang</creatorcontrib><title>Few-Shot Scene Classification Using Auxiliary Objectives and Transductive Inference</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Few-shot learning features the capability of generalizing from very few examples. To realize few-shot scene classification of optical remote sensing images, we propose a two-stage framework that first learns a general-purpose representation and then propagates knowledge in a transductive paradigm. Concretely, the first stage jointly learns a semantic class prediction task as well as two auxiliary objectives in a multitask model. Therein, rotation prediction estimates the 2-D transformation of an input, and contrastive prediction aims to pull together the positive pairs while pushing apart the negative pairs. The second stage aims to find an expected prototype having the minimal distance to all samples within the same class. In particular, label propagation (LP) is applied to make joint prediction for both labeled and unlabeled data. Then, the labeled set is expanded by those pseudo-labeled samples, thereby forming a rectified prototype to perform nearest-neighbor classification better. Extensive experiments on standard benchmarks, including Remote sensing image scene classification dataset with 45 classes, published by Northwestern Polytechnical University (NWPU-RESISC45), Aerial Image Dataset (AID), and Remote sensing image scene classification dataset with 19 classes, published by Wuhan University (WHU-RS-19), demonstrate that our method works effectively and achieves the best performance that significantly outperforms many state-of-the-art approaches.</description><subject>Benchmarks</subject><subject>Classification</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Few-shot scene classification</subject><subject>Image classification</subject><subject>Knowledge representation</subject><subject>label propagation (LP)</subject><subject>Nearest-neighbor</subject><subject>optical remote sensing image</subject><subject>Optical sensors</subject><subject>Predictions</subject><subject>pretext task</subject><subject>Prototypes</subject><subject>rectified prototype</subject><subject>Remote sensing</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>Training</subject><subject>transductive inference</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKsfQLwEPG-dJJvd5FiKrYVCwW3BW0izs5pSs3Wz659v79YWTzPMvDeP-RFyy2DEGOiHxey5GHHgfCSYBs3lGRkwKVUCMmfnhz6VidTq5ZJcxbgF4KlS-YAUU_xKire6pYXDgHSyszH6yjvb-jrQdfThlY67b7_ztvmhy80WXes_MVIbSrpqbIhl9zeh81Bhg8HhNbmo7C7izakOyXr6uJo8JYvlbD4ZLxLHtWiTCqyTCkFVG8ttxqEEDlBaC1nO0yxFwZ1WIHW_y7mQ1m6EFVzbSji0QoghuT_e3Tf1R4exNdu6a0IfaXimuWJpyqBXsaPKNXWMDVZm3_j3_hnDwBzYmQM7c2BnTux6z93R4xHxX68V1ypn4hfW92q8</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ji, Hong</creator><creator>Yang, Hong</creator><creator>Gao, Zhi</creator><creator>Li, Can</creator><creator>Wan, Yu</creator><creator>Cui, Jinqiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6850-5721</orcidid><orcidid>https://orcid.org/0000-0003-0812-4334</orcidid><orcidid>https://orcid.org/0000-0001-5725-1431</orcidid><orcidid>https://orcid.org/0000-0003-1649-9611</orcidid><orcidid>https://orcid.org/0000-0003-3325-1183</orcidid><orcidid>https://orcid.org/0000-0002-7833-1876</orcidid></search><sort><creationdate>2022</creationdate><title>Few-Shot Scene Classification Using Auxiliary Objectives and Transductive Inference</title><author>Ji, Hong ; Yang, Hong ; Gao, Zhi ; Li, Can ; Wan, Yu ; Cui, Jinqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f0ac58e08fba2a620d0200daa0672464e32c98059a627235aab3a329af3cea333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Benchmarks</topic><topic>Classification</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Few-shot scene classification</topic><topic>Image classification</topic><topic>Knowledge representation</topic><topic>label propagation (LP)</topic><topic>Nearest-neighbor</topic><topic>optical remote sensing image</topic><topic>Optical sensors</topic><topic>Predictions</topic><topic>pretext task</topic><topic>Prototypes</topic><topic>rectified prototype</topic><topic>Remote sensing</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>Training</topic><topic>transductive inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Hong</creatorcontrib><creatorcontrib>Yang, Hong</creatorcontrib><creatorcontrib>Gao, Zhi</creatorcontrib><creatorcontrib>Li, Can</creatorcontrib><creatorcontrib>Wan, Yu</creatorcontrib><creatorcontrib>Cui, Jinqiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ji, Hong</au><au>Yang, Hong</au><au>Gao, Zhi</au><au>Li, Can</au><au>Wan, Yu</au><au>Cui, Jinqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Few-Shot Scene Classification Using Auxiliary Objectives and Transductive Inference</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Few-shot learning features the capability of generalizing from very few examples. To realize few-shot scene classification of optical remote sensing images, we propose a two-stage framework that first learns a general-purpose representation and then propagates knowledge in a transductive paradigm. Concretely, the first stage jointly learns a semantic class prediction task as well as two auxiliary objectives in a multitask model. Therein, rotation prediction estimates the 2-D transformation of an input, and contrastive prediction aims to pull together the positive pairs while pushing apart the negative pairs. The second stage aims to find an expected prototype having the minimal distance to all samples within the same class. In particular, label propagation (LP) is applied to make joint prediction for both labeled and unlabeled data. Then, the labeled set is expanded by those pseudo-labeled samples, thereby forming a rectified prototype to perform nearest-neighbor classification better. Extensive experiments on standard benchmarks, including Remote sensing image scene classification dataset with 45 classes, published by Northwestern Polytechnical University (NWPU-RESISC45), Aerial Image Dataset (AID), and Remote sensing image scene classification dataset with 19 classes, published by Wuhan University (WHU-RS-19), demonstrate that our method works effectively and achieves the best performance that significantly outperforms many state-of-the-art approaches.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2022.3190925</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6850-5721</orcidid><orcidid>https://orcid.org/0000-0003-0812-4334</orcidid><orcidid>https://orcid.org/0000-0001-5725-1431</orcidid><orcidid>https://orcid.org/0000-0003-1649-9611</orcidid><orcidid>https://orcid.org/0000-0003-3325-1183</orcidid><orcidid>https://orcid.org/0000-0002-7833-1876</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2022_3190925 |
source | IEEE/IET Electronic Library |
subjects | Benchmarks Classification Datasets Feature extraction Few-shot scene classification Image classification Knowledge representation label propagation (LP) Nearest-neighbor optical remote sensing image Optical sensors Predictions pretext task Prototypes rectified prototype Remote sensing Semantics Task analysis Training transductive inference |
title | Few-Shot Scene Classification Using Auxiliary Objectives and Transductive Inference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Few-Shot%20Scene%20Classification%20Using%20Auxiliary%20Objectives%20and%20Transductive%20Inference&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Ji,%20Hong&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2022.3190925&rft_dat=%3Cproquest_RIE%3E2692814410%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692814410&rft_id=info:pmid/&rft_ieee_id=9829871&rfr_iscdi=true |