A Novel Method Based on Kernel Density for Estimating Crown Base Height Using UAV-Borne LiDAR Data
As an essential parameter in forestry, crown base height (CBH) faces many tasks. The methods are still developing for estimating it. Unmanned aerial vehicles (UAVs) light detection and ranging (LiDAR) supplies new, massive, and high-density data for estimating CBH. Many methods had been generated to...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 19 |
creator | Wang, Yantian Xi, Xiaohuan Wang, Cheng Yang, Xuebo Wang, Pu Nie, Sheng Du, Meng |
description | As an essential parameter in forestry, crown base height (CBH) faces many tasks. The methods are still developing for estimating it. Unmanned aerial vehicles (UAVs) light detection and ranging (LiDAR) supplies new, massive, and high-density data for estimating CBH. Many methods had been generated to compute CBH indirectly using regression-based ways or directly using geometric/statistical LiDAR-based ways. However, there were few methods to deal with the problem of understory, trunk, and noise points caused by high-density UAV data. A robust method was first proposed in this study to directly estimate CBH from LiDAR data, which contained two significant skills: 1) understory vegetation removal for each tree using a polynomial curve and 2) computing CBH by kernel densification of the elevation frequency histogram of LiDAR data. It could tolerate the understory and trunk points better through kernel convolution. The method proposed in this study and a previous simple model were applied in a crabapple plot in the Huailai Remote Sensing Comprehensive Experimental Station, Hebei, China, and verified by field-measured data. It was inspiring that our method is slightly better, and the mean CBH of LiDAR-derived trees was only 1.60 cm higher than that of field-measured trees. The mean absolute error (MAE) of CBH was 4.91 cm, {R}^{2} was 0.73, the root-mean-squared error (RMSE) was 8.29 cm, and the bias was 2.68% for these trees. Generally, this method showed strong usability for high-density UAV LiDAR data and high precision for measuring CBH of low trees. |
doi_str_mv | 10.1109/LGRS.2022.3171316 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2022_3171316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9765478</ieee_id><sourcerecordid>2663643406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-cc2aa9bc04bd4eeb40ec86b765994c077a28f37b7c95a47138ff7a19987271f63</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpfiW2l33RIgJIhSJ2luM6baoSF9sF9e9JaMVqRqN7Z-YeAK4x6mGM5F0-mb32CCKkRzHHFGcnoIPTVCQo5fi07VmapFJ8nIOLENYIESYE74CiD5_dt93AJxtXbgEHOtgFdDV8tL5uxiNbhyruYek8HIdYfepY1Us49O6n_hPDqa2WqwjnoZ3P--_JwDVOmFej_gyOdNSX4KzUm2CvjrUL5vfjt-E0yV8mD8N-nhgiaUyMIVrLwiBWLJi1BUPWiKzgWSolM4hzTURJecGNTDVrMoqy5BpLKTjhuMxoF9we9m69-9rZENXa7XzdnFQky2jGKEOtCh9UxrsQvC3V1jep_F5hpFqUqkWpWpTqiLLx3Bw8lbX2Xy-b1xgX9Bfo6m3S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663643406</pqid></control><display><type>article</type><title>A Novel Method Based on Kernel Density for Estimating Crown Base Height Using UAV-Borne LiDAR Data</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Yantian ; Xi, Xiaohuan ; Wang, Cheng ; Yang, Xuebo ; Wang, Pu ; Nie, Sheng ; Du, Meng</creator><creatorcontrib>Wang, Yantian ; Xi, Xiaohuan ; Wang, Cheng ; Yang, Xuebo ; Wang, Pu ; Nie, Sheng ; Du, Meng</creatorcontrib><description>As an essential parameter in forestry, crown base height (CBH) faces many tasks. The methods are still developing for estimating it. Unmanned aerial vehicles (UAVs) light detection and ranging (LiDAR) supplies new, massive, and high-density data for estimating CBH. Many methods had been generated to compute CBH indirectly using regression-based ways or directly using geometric/statistical LiDAR-based ways. However, there were few methods to deal with the problem of understory, trunk, and noise points caused by high-density UAV data. A robust method was first proposed in this study to directly estimate CBH from LiDAR data, which contained two significant skills: 1) understory vegetation removal for each tree using a polynomial curve and 2) computing CBH by kernel densification of the elevation frequency histogram of LiDAR data. It could tolerate the understory and trunk points better through kernel convolution. The method proposed in this study and a previous simple model were applied in a crabapple plot in the Huailai Remote Sensing Comprehensive Experimental Station, Hebei, China, and verified by field-measured data. It was inspiring that our method is slightly better, and the mean CBH of LiDAR-derived trees was only 1.60 cm higher than that of field-measured trees. The mean absolute error (MAE) of CBH was 4.91 cm, <inline-formula> <tex-math notation="LaTeX">{R}^{2} </tex-math></inline-formula> was 0.73, the root-mean-squared error (RMSE) was 8.29 cm, and the bias was 2.68% for these trees. Generally, this method showed strong usability for high-density UAV LiDAR data and high precision for measuring CBH of low trees.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2022.3171316</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Convolution ; Crown base height (CBH) ; Densification ; Density ; Elevation ; elevation frequency histogram ; Error analysis ; Estimation ; Height ; Histograms ; Kernel ; kernel density ; Kernels ; Laser radar ; Lidar ; light detection and ranging (LiDAR) ; Methods ; Polynomials ; Regression analysis ; Remote sensing ; Root-mean-square errors ; Statistical analysis ; Trees ; Understory ; unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles ; Vegetation</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-cc2aa9bc04bd4eeb40ec86b765994c077a28f37b7c95a47138ff7a19987271f63</citedby><cites>FETCH-LOGICAL-c293t-cc2aa9bc04bd4eeb40ec86b765994c077a28f37b7c95a47138ff7a19987271f63</cites><orcidid>0000-0002-0949-0179 ; 0000-0003-2686-5275 ; 0000-0002-5245-5619 ; 0000-0001-6979-170X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9765478$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9765478$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Yantian</creatorcontrib><creatorcontrib>Xi, Xiaohuan</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Yang, Xuebo</creatorcontrib><creatorcontrib>Wang, Pu</creatorcontrib><creatorcontrib>Nie, Sheng</creatorcontrib><creatorcontrib>Du, Meng</creatorcontrib><title>A Novel Method Based on Kernel Density for Estimating Crown Base Height Using UAV-Borne LiDAR Data</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>As an essential parameter in forestry, crown base height (CBH) faces many tasks. The methods are still developing for estimating it. Unmanned aerial vehicles (UAVs) light detection and ranging (LiDAR) supplies new, massive, and high-density data for estimating CBH. Many methods had been generated to compute CBH indirectly using regression-based ways or directly using geometric/statistical LiDAR-based ways. However, there were few methods to deal with the problem of understory, trunk, and noise points caused by high-density UAV data. A robust method was first proposed in this study to directly estimate CBH from LiDAR data, which contained two significant skills: 1) understory vegetation removal for each tree using a polynomial curve and 2) computing CBH by kernel densification of the elevation frequency histogram of LiDAR data. It could tolerate the understory and trunk points better through kernel convolution. The method proposed in this study and a previous simple model were applied in a crabapple plot in the Huailai Remote Sensing Comprehensive Experimental Station, Hebei, China, and verified by field-measured data. It was inspiring that our method is slightly better, and the mean CBH of LiDAR-derived trees was only 1.60 cm higher than that of field-measured trees. The mean absolute error (MAE) of CBH was 4.91 cm, <inline-formula> <tex-math notation="LaTeX">{R}^{2} </tex-math></inline-formula> was 0.73, the root-mean-squared error (RMSE) was 8.29 cm, and the bias was 2.68% for these trees. Generally, this method showed strong usability for high-density UAV LiDAR data and high precision for measuring CBH of low trees.</description><subject>Convolution</subject><subject>Crown base height (CBH)</subject><subject>Densification</subject><subject>Density</subject><subject>Elevation</subject><subject>elevation frequency histogram</subject><subject>Error analysis</subject><subject>Estimation</subject><subject>Height</subject><subject>Histograms</subject><subject>Kernel</subject><subject>kernel density</subject><subject>Kernels</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>light detection and ranging (LiDAR)</subject><subject>Methods</subject><subject>Polynomials</subject><subject>Regression analysis</subject><subject>Remote sensing</subject><subject>Root-mean-square errors</subject><subject>Statistical analysis</subject><subject>Trees</subject><subject>Understory</subject><subject>unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><subject>Vegetation</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpfiW2l33RIgJIhSJ2luM6baoSF9sF9e9JaMVqRqN7Z-YeAK4x6mGM5F0-mb32CCKkRzHHFGcnoIPTVCQo5fi07VmapFJ8nIOLENYIESYE74CiD5_dt93AJxtXbgEHOtgFdDV8tL5uxiNbhyruYek8HIdYfepY1Us49O6n_hPDqa2WqwjnoZ3P--_JwDVOmFej_gyOdNSX4KzUm2CvjrUL5vfjt-E0yV8mD8N-nhgiaUyMIVrLwiBWLJi1BUPWiKzgWSolM4hzTURJecGNTDVrMoqy5BpLKTjhuMxoF9we9m69-9rZENXa7XzdnFQky2jGKEOtCh9UxrsQvC3V1jep_F5hpFqUqkWpWpTqiLLx3Bw8lbX2Xy-b1xgX9Bfo6m3S</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Wang, Yantian</creator><creator>Xi, Xiaohuan</creator><creator>Wang, Cheng</creator><creator>Yang, Xuebo</creator><creator>Wang, Pu</creator><creator>Nie, Sheng</creator><creator>Du, Meng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0949-0179</orcidid><orcidid>https://orcid.org/0000-0003-2686-5275</orcidid><orcidid>https://orcid.org/0000-0002-5245-5619</orcidid><orcidid>https://orcid.org/0000-0001-6979-170X</orcidid></search><sort><creationdate>2022</creationdate><title>A Novel Method Based on Kernel Density for Estimating Crown Base Height Using UAV-Borne LiDAR Data</title><author>Wang, Yantian ; Xi, Xiaohuan ; Wang, Cheng ; Yang, Xuebo ; Wang, Pu ; Nie, Sheng ; Du, Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-cc2aa9bc04bd4eeb40ec86b765994c077a28f37b7c95a47138ff7a19987271f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convolution</topic><topic>Crown base height (CBH)</topic><topic>Densification</topic><topic>Density</topic><topic>Elevation</topic><topic>elevation frequency histogram</topic><topic>Error analysis</topic><topic>Estimation</topic><topic>Height</topic><topic>Histograms</topic><topic>Kernel</topic><topic>kernel density</topic><topic>Kernels</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>light detection and ranging (LiDAR)</topic><topic>Methods</topic><topic>Polynomials</topic><topic>Regression analysis</topic><topic>Remote sensing</topic><topic>Root-mean-square errors</topic><topic>Statistical analysis</topic><topic>Trees</topic><topic>Understory</topic><topic>unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yantian</creatorcontrib><creatorcontrib>Xi, Xiaohuan</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Yang, Xuebo</creatorcontrib><creatorcontrib>Wang, Pu</creatorcontrib><creatorcontrib>Nie, Sheng</creatorcontrib><creatorcontrib>Du, Meng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yantian</au><au>Xi, Xiaohuan</au><au>Wang, Cheng</au><au>Yang, Xuebo</au><au>Wang, Pu</au><au>Nie, Sheng</au><au>Du, Meng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Method Based on Kernel Density for Estimating Crown Base Height Using UAV-Borne LiDAR Data</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>As an essential parameter in forestry, crown base height (CBH) faces many tasks. The methods are still developing for estimating it. Unmanned aerial vehicles (UAVs) light detection and ranging (LiDAR) supplies new, massive, and high-density data for estimating CBH. Many methods had been generated to compute CBH indirectly using regression-based ways or directly using geometric/statistical LiDAR-based ways. However, there were few methods to deal with the problem of understory, trunk, and noise points caused by high-density UAV data. A robust method was first proposed in this study to directly estimate CBH from LiDAR data, which contained two significant skills: 1) understory vegetation removal for each tree using a polynomial curve and 2) computing CBH by kernel densification of the elevation frequency histogram of LiDAR data. It could tolerate the understory and trunk points better through kernel convolution. The method proposed in this study and a previous simple model were applied in a crabapple plot in the Huailai Remote Sensing Comprehensive Experimental Station, Hebei, China, and verified by field-measured data. It was inspiring that our method is slightly better, and the mean CBH of LiDAR-derived trees was only 1.60 cm higher than that of field-measured trees. The mean absolute error (MAE) of CBH was 4.91 cm, <inline-formula> <tex-math notation="LaTeX">{R}^{2} </tex-math></inline-formula> was 0.73, the root-mean-squared error (RMSE) was 8.29 cm, and the bias was 2.68% for these trees. Generally, this method showed strong usability for high-density UAV LiDAR data and high precision for measuring CBH of low trees.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2022.3171316</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0949-0179</orcidid><orcidid>https://orcid.org/0000-0003-2686-5275</orcidid><orcidid>https://orcid.org/0000-0002-5245-5619</orcidid><orcidid>https://orcid.org/0000-0001-6979-170X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2022_3171316 |
source | IEEE Electronic Library (IEL) |
subjects | Convolution Crown base height (CBH) Densification Density Elevation elevation frequency histogram Error analysis Estimation Height Histograms Kernel kernel density Kernels Laser radar Lidar light detection and ranging (LiDAR) Methods Polynomials Regression analysis Remote sensing Root-mean-square errors Statistical analysis Trees Understory unmanned aerial vehicle (UAV) Unmanned aerial vehicles Vegetation |
title | A Novel Method Based on Kernel Density for Estimating Crown Base Height Using UAV-Borne LiDAR Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Method%20Based%20on%20Kernel%20Density%20for%20Estimating%20Crown%20Base%20Height%20Using%20UAV-Borne%20LiDAR%20Data&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Wang,%20Yantian&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2022.3171316&rft_dat=%3Cproquest_RIE%3E2663643406%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663643406&rft_id=info:pmid/&rft_ieee_id=9765478&rfr_iscdi=true |