Floating Small Target Detection in Sea Clutter Using Mean Spectral Radius
Detection of floating small targets in sea clutter is a challenging problem for maritime surveillance radar. For sea-surface floating targets without regular movement, it is hard for traditional model-based methods to achieve satisfying performance. Considering that the radar echoes will exhibit str...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 19 |
creator | Yan, Yujia Wu, Guangxin Dong, Yang Bai, Yechao |
description | Detection of floating small targets in sea clutter is a challenging problem for maritime surveillance radar. For sea-surface floating targets without regular movement, it is hard for traditional model-based methods to achieve satisfying performance. Considering that the radar echoes will exhibit stronger statistical correlations when the target is present, this work proposes a detector using mean spectral radius (MSR), which is a data-driven method based on the eigenvalue analysis of a random matrix. It is first illustrated that the inner radius of the first-order autoregressive model will decrease with the increase of data correlations when the outer radius is normalized. The spectral radius of the target echo distributes on a smaller value compared with sea clutter due to stronger statistical correlations. The MSR, which is defined to be a specific linear spectral statistics indicating data correlations, is demonstrated to be an effective test statistic to distinguish the target echo from sea clutter. It is shown that by the central limit theorem (CLT), the MSR follows a Gaussian distribution. Experiments on Intelligent PIXel Processing Radar (IPIX) datasets show that the proposed method can effectively improve the detection performance. In addition, the MSR can be applied to construct multiple-feature-based detector to further enhance robustness. |
doi_str_mv | 10.1109/LGRS.2022.3165163 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2022_3165163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9750068</ieee_id><sourcerecordid>2652706381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-7ac1bc7a4e3664988500dfb7b7f05aecbf1950fcc46590d460d37ab3335405d03</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6u5v9yFGqrYWI0A_wtmw2m5KSJnV3c_Dfm9DiaYbheWeGB6FHAjNCIHvJl-vNjAKlM0YEJ4JdoQnhXCXAJbke-5QnPFPft-guhAMATZWSE7RaNJ2JdbvHm6NpGrw1fu8ifnPR2Vh3La5bvHEGz5s-RufxLozspzPD-DQg3jR4bcq6D_fopjJNcA-XOkW7xft2_pHkX8vV_DVPLKUsJtJYUlhpUseESDOlOEBZFbKQFXDjbFGRjENlbSp4BmUqoGTSFIwxngIvgU3R83nvyXc_vQtRH7ret8NJTQWnEgRTZKDImbK-C8G7Sp98fTT-VxPQozE9GtOjMX0xNmSezpnaOffPZ3L4UCj2ByjWZiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652706381</pqid></control><display><type>article</type><title>Floating Small Target Detection in Sea Clutter Using Mean Spectral Radius</title><source>IEEE Electronic Library (IEL)</source><creator>Yan, Yujia ; Wu, Guangxin ; Dong, Yang ; Bai, Yechao</creator><creatorcontrib>Yan, Yujia ; Wu, Guangxin ; Dong, Yang ; Bai, Yechao</creatorcontrib><description>Detection of floating small targets in sea clutter is a challenging problem for maritime surveillance radar. For sea-surface floating targets without regular movement, it is hard for traditional model-based methods to achieve satisfying performance. Considering that the radar echoes will exhibit stronger statistical correlations when the target is present, this work proposes a detector using mean spectral radius (MSR), which is a data-driven method based on the eigenvalue analysis of a random matrix. It is first illustrated that the inner radius of the first-order autoregressive model will decrease with the increase of data correlations when the outer radius is normalized. The spectral radius of the target echo distributes on a smaller value compared with sea clutter due to stronger statistical correlations. The MSR, which is defined to be a specific linear spectral statistics indicating data correlations, is demonstrated to be an effective test statistic to distinguish the target echo from sea clutter. It is shown that by the central limit theorem (CLT), the MSR follows a Gaussian distribution. Experiments on Intelligent PIXel Processing Radar (IPIX) datasets show that the proposed method can effectively improve the detection performance. In addition, the MSR can be applied to construct multiple-feature-based detector to further enhance robustness.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2022.3165163</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autoregressive models ; Clutter ; Correlation ; Data models ; Detection ; Echoes ; Eigenvalues ; Eigenvalues and eigenfunctions ; Electrostatic discharges ; Floating ; Gaussian distribution ; Mean ; Mean spectral radius (MSR) ; Normal distribution ; Object detection ; Radar ; Radar clutter ; Radar echoes ; random matrix theory (RMT) ; sea clutter ; Sea measurements ; Statistical analysis ; Statistical methods ; Statistical tests ; Statistics ; Surface clutter ; Surveillance radar ; Target detection</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-7ac1bc7a4e3664988500dfb7b7f05aecbf1950fcc46590d460d37ab3335405d03</citedby><cites>FETCH-LOGICAL-c223t-7ac1bc7a4e3664988500dfb7b7f05aecbf1950fcc46590d460d37ab3335405d03</cites><orcidid>0000-0001-5244-674X ; 0000-0003-0759-8722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9750068$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9750068$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yan, Yujia</creatorcontrib><creatorcontrib>Wu, Guangxin</creatorcontrib><creatorcontrib>Dong, Yang</creatorcontrib><creatorcontrib>Bai, Yechao</creatorcontrib><title>Floating Small Target Detection in Sea Clutter Using Mean Spectral Radius</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Detection of floating small targets in sea clutter is a challenging problem for maritime surveillance radar. For sea-surface floating targets without regular movement, it is hard for traditional model-based methods to achieve satisfying performance. Considering that the radar echoes will exhibit stronger statistical correlations when the target is present, this work proposes a detector using mean spectral radius (MSR), which is a data-driven method based on the eigenvalue analysis of a random matrix. It is first illustrated that the inner radius of the first-order autoregressive model will decrease with the increase of data correlations when the outer radius is normalized. The spectral radius of the target echo distributes on a smaller value compared with sea clutter due to stronger statistical correlations. The MSR, which is defined to be a specific linear spectral statistics indicating data correlations, is demonstrated to be an effective test statistic to distinguish the target echo from sea clutter. It is shown that by the central limit theorem (CLT), the MSR follows a Gaussian distribution. Experiments on Intelligent PIXel Processing Radar (IPIX) datasets show that the proposed method can effectively improve the detection performance. In addition, the MSR can be applied to construct multiple-feature-based detector to further enhance robustness.</description><subject>Autoregressive models</subject><subject>Clutter</subject><subject>Correlation</subject><subject>Data models</subject><subject>Detection</subject><subject>Echoes</subject><subject>Eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Electrostatic discharges</subject><subject>Floating</subject><subject>Gaussian distribution</subject><subject>Mean</subject><subject>Mean spectral radius (MSR)</subject><subject>Normal distribution</subject><subject>Object detection</subject><subject>Radar</subject><subject>Radar clutter</subject><subject>Radar echoes</subject><subject>random matrix theory (RMT)</subject><subject>sea clutter</subject><subject>Sea measurements</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical tests</subject><subject>Statistics</subject><subject>Surface clutter</subject><subject>Surveillance radar</subject><subject>Target detection</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6u5v9yFGqrYWI0A_wtmw2m5KSJnV3c_Dfm9DiaYbheWeGB6FHAjNCIHvJl-vNjAKlM0YEJ4JdoQnhXCXAJbke-5QnPFPft-guhAMATZWSE7RaNJ2JdbvHm6NpGrw1fu8ifnPR2Vh3La5bvHEGz5s-RufxLozspzPD-DQg3jR4bcq6D_fopjJNcA-XOkW7xft2_pHkX8vV_DVPLKUsJtJYUlhpUseESDOlOEBZFbKQFXDjbFGRjENlbSp4BmUqoGTSFIwxngIvgU3R83nvyXc_vQtRH7ret8NJTQWnEgRTZKDImbK-C8G7Sp98fTT-VxPQozE9GtOjMX0xNmSezpnaOffPZ3L4UCj2ByjWZiE</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yan, Yujia</creator><creator>Wu, Guangxin</creator><creator>Dong, Yang</creator><creator>Bai, Yechao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5244-674X</orcidid><orcidid>https://orcid.org/0000-0003-0759-8722</orcidid></search><sort><creationdate>2022</creationdate><title>Floating Small Target Detection in Sea Clutter Using Mean Spectral Radius</title><author>Yan, Yujia ; Wu, Guangxin ; Dong, Yang ; Bai, Yechao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-7ac1bc7a4e3664988500dfb7b7f05aecbf1950fcc46590d460d37ab3335405d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Autoregressive models</topic><topic>Clutter</topic><topic>Correlation</topic><topic>Data models</topic><topic>Detection</topic><topic>Echoes</topic><topic>Eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Electrostatic discharges</topic><topic>Floating</topic><topic>Gaussian distribution</topic><topic>Mean</topic><topic>Mean spectral radius (MSR)</topic><topic>Normal distribution</topic><topic>Object detection</topic><topic>Radar</topic><topic>Radar clutter</topic><topic>Radar echoes</topic><topic>random matrix theory (RMT)</topic><topic>sea clutter</topic><topic>Sea measurements</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical tests</topic><topic>Statistics</topic><topic>Surface clutter</topic><topic>Surveillance radar</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Yujia</creatorcontrib><creatorcontrib>Wu, Guangxin</creatorcontrib><creatorcontrib>Dong, Yang</creatorcontrib><creatorcontrib>Bai, Yechao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan, Yujia</au><au>Wu, Guangxin</au><au>Dong, Yang</au><au>Bai, Yechao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Floating Small Target Detection in Sea Clutter Using Mean Spectral Radius</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Detection of floating small targets in sea clutter is a challenging problem for maritime surveillance radar. For sea-surface floating targets without regular movement, it is hard for traditional model-based methods to achieve satisfying performance. Considering that the radar echoes will exhibit stronger statistical correlations when the target is present, this work proposes a detector using mean spectral radius (MSR), which is a data-driven method based on the eigenvalue analysis of a random matrix. It is first illustrated that the inner radius of the first-order autoregressive model will decrease with the increase of data correlations when the outer radius is normalized. The spectral radius of the target echo distributes on a smaller value compared with sea clutter due to stronger statistical correlations. The MSR, which is defined to be a specific linear spectral statistics indicating data correlations, is demonstrated to be an effective test statistic to distinguish the target echo from sea clutter. It is shown that by the central limit theorem (CLT), the MSR follows a Gaussian distribution. Experiments on Intelligent PIXel Processing Radar (IPIX) datasets show that the proposed method can effectively improve the detection performance. In addition, the MSR can be applied to construct multiple-feature-based detector to further enhance robustness.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2022.3165163</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5244-674X</orcidid><orcidid>https://orcid.org/0000-0003-0759-8722</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2022_3165163 |
source | IEEE Electronic Library (IEL) |
subjects | Autoregressive models Clutter Correlation Data models Detection Echoes Eigenvalues Eigenvalues and eigenfunctions Electrostatic discharges Floating Gaussian distribution Mean Mean spectral radius (MSR) Normal distribution Object detection Radar Radar clutter Radar echoes random matrix theory (RMT) sea clutter Sea measurements Statistical analysis Statistical methods Statistical tests Statistics Surface clutter Surveillance radar Target detection |
title | Floating Small Target Detection in Sea Clutter Using Mean Spectral Radius |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A22%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Floating%20Small%20Target%20Detection%20in%20Sea%20Clutter%20Using%20Mean%20Spectral%20Radius&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Yan,%20Yujia&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2022.3165163&rft_dat=%3Cproquest_RIE%3E2652706381%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652706381&rft_id=info:pmid/&rft_ieee_id=9750068&rfr_iscdi=true |