Cauchy-Rician Model for Backscattering in Urban SAR Images

This letter presents a new statistical model for urban scene synthetic aperture radar (SAR) images by combining the Cauchy distribution, which is heavy tailed, with the Rician backscattering. The literature spans various well-known models most of which are derived under the assumption that the scene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Hauptverfasser: Karakus, Oktay, Kuruoglu, Ercan E., Achim, Alin, Altinkaya, Mustafa A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 19
creator Karakus, Oktay
Kuruoglu, Ercan E.
Achim, Alin
Altinkaya, Mustafa A.
description This letter presents a new statistical model for urban scene synthetic aperture radar (SAR) images by combining the Cauchy distribution, which is heavy tailed, with the Rician backscattering. The literature spans various well-known models most of which are derived under the assumption that the scene consists of multitudes of random reflectors. This idea specifically fails for urban scenes since they accommodate a heterogeneous collection of strong scatterers such as buildings, cars, and wall corners. Moreover, when it comes to analyzing their statistical behavior, due to these strong reflectors, urban scenes include a high number of high amplitude samples, which implies that urban scenes are mostly heavy-tailed. The proposed Cauchy-Rician model contributes to the literature by leveraging nonzero location (Rician) heavy-tailed (Cauchy) signal components. In the experimental analysis, the Cauchy-Rician model is investigated in comparison to state-of-the-art statistical models that include \mathcal {G}_{0} , generalized gamma, and the lognormal distribution. The numerical analysis demonstrates the superior performance and flexibility of the proposed distribution for modeling urban scenes.
doi_str_mv 10.1109/LGRS.2022.3146370
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2022_3146370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9693957</ieee_id><sourcerecordid>2635043716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-86e3ea18c384190b2b7205d3a8f1e43dbaf4097ec086d64dbe8c1b14714406433</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFZ_gLgJuE59L_PtrhathYrQWnA3TCaTmtomOpMu-u9NaHH17uLc--AQcoswQgT9MJ8ulqMMsmxEkQkq4YwMkHOVApd43mfGU67V5yW5inEDkDGl5IA8TuzefR3SReUqWydvTeG3SdmE5Mm67-hs2_pQ1eukqpNVyDtiOV4ks51d-3hNLkq7jf7mdIdk9fL8MXlN5-_T2WQ8Tx2lok2V8NRbVI4qhhryLJcZ8IJaVaJntMhtyUBL70CJQrAi98phjkwiYyAYpUNyf9z9Cc3v3sfWbJp9qLuXJhOUA6MSRUfhkXKhiTH40vyEamfDwSCYXpHpFZlekTkp6jp3x07lvf_ntdBUc0n_AKOIX_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635043716</pqid></control><display><type>article</type><title>Cauchy-Rician Model for Backscattering in Urban SAR Images</title><source>IEEE Electronic Library (IEL)</source><creator>Karakus, Oktay ; Kuruoglu, Ercan E. ; Achim, Alin ; Altinkaya, Mustafa A.</creator><creatorcontrib>Karakus, Oktay ; Kuruoglu, Ercan E. ; Achim, Alin ; Altinkaya, Mustafa A.</creatorcontrib><description>This letter presents a new statistical model for urban scene synthetic aperture radar (SAR) images by combining the Cauchy distribution, which is heavy tailed, with the Rician backscattering. The literature spans various well-known models most of which are derived under the assumption that the scene consists of multitudes of random reflectors. This idea specifically fails for urban scenes since they accommodate a heterogeneous collection of strong scatterers such as buildings, cars, and wall corners. Moreover, when it comes to analyzing their statistical behavior, due to these strong reflectors, urban scenes include a high number of high amplitude samples, which implies that urban scenes are mostly heavy-tailed. The proposed Cauchy-Rician model contributes to the literature by leveraging nonzero location (Rician) heavy-tailed (Cauchy) signal components. In the experimental analysis, the Cauchy-Rician model is investigated in comparison to state-of-the-art statistical models that include &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mathcal {G}_{0} &lt;/tex-math&gt;&lt;/inline-formula&gt;, generalized gamma, and the lognormal distribution. The numerical analysis demonstrates the superior performance and flexibility of the proposed distribution for modeling urban scenes.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2022.3146370</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Backscatter ; Backscattering ; Cauchy–Rician distribution ; Distribution ; Mathematical models ; Modelling ; Numerical analysis ; Numerical models ; Probability density function ; Radar imaging ; Radar polarimetry ; Reflectors ; Rician channels ; SAR (radar) ; Scattering ; Sea surface ; Statistical analysis ; Statistical methods ; Statistical models ; Synthetic aperture radar ; synthetic aperture radar (SAR) imaging ; Urban areas ; urban modeling</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-86e3ea18c384190b2b7205d3a8f1e43dbaf4097ec086d64dbe8c1b14714406433</citedby><cites>FETCH-LOGICAL-c336t-86e3ea18c384190b2b7205d3a8f1e43dbaf4097ec086d64dbe8c1b14714406433</cites><orcidid>0000-0002-0982-7798 ; 0000-0001-8048-5850 ; 0000-0001-8009-9319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9693957$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,4012,27906,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9693957$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karakus, Oktay</creatorcontrib><creatorcontrib>Kuruoglu, Ercan E.</creatorcontrib><creatorcontrib>Achim, Alin</creatorcontrib><creatorcontrib>Altinkaya, Mustafa A.</creatorcontrib><title>Cauchy-Rician Model for Backscattering in Urban SAR Images</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>This letter presents a new statistical model for urban scene synthetic aperture radar (SAR) images by combining the Cauchy distribution, which is heavy tailed, with the Rician backscattering. The literature spans various well-known models most of which are derived under the assumption that the scene consists of multitudes of random reflectors. This idea specifically fails for urban scenes since they accommodate a heterogeneous collection of strong scatterers such as buildings, cars, and wall corners. Moreover, when it comes to analyzing their statistical behavior, due to these strong reflectors, urban scenes include a high number of high amplitude samples, which implies that urban scenes are mostly heavy-tailed. The proposed Cauchy-Rician model contributes to the literature by leveraging nonzero location (Rician) heavy-tailed (Cauchy) signal components. In the experimental analysis, the Cauchy-Rician model is investigated in comparison to state-of-the-art statistical models that include &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mathcal {G}_{0} &lt;/tex-math&gt;&lt;/inline-formula&gt;, generalized gamma, and the lognormal distribution. The numerical analysis demonstrates the superior performance and flexibility of the proposed distribution for modeling urban scenes.</description><subject>Backscatter</subject><subject>Backscattering</subject><subject>Cauchy–Rician distribution</subject><subject>Distribution</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Numerical analysis</subject><subject>Numerical models</subject><subject>Probability density function</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>Reflectors</subject><subject>Rician channels</subject><subject>SAR (radar)</subject><subject>Scattering</subject><subject>Sea surface</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR) imaging</subject><subject>Urban areas</subject><subject>urban modeling</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AURQdRsFZ_gLgJuE59L_PtrhathYrQWnA3TCaTmtomOpMu-u9NaHH17uLc--AQcoswQgT9MJ8ulqMMsmxEkQkq4YwMkHOVApd43mfGU67V5yW5inEDkDGl5IA8TuzefR3SReUqWydvTeG3SdmE5Mm67-hs2_pQ1eukqpNVyDtiOV4ks51d-3hNLkq7jf7mdIdk9fL8MXlN5-_T2WQ8Tx2lok2V8NRbVI4qhhryLJcZ8IJaVaJntMhtyUBL70CJQrAi98phjkwiYyAYpUNyf9z9Cc3v3sfWbJp9qLuXJhOUA6MSRUfhkXKhiTH40vyEamfDwSCYXpHpFZlekTkp6jp3x07lvf_ntdBUc0n_AKOIX_Q</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Karakus, Oktay</creator><creator>Kuruoglu, Ercan E.</creator><creator>Achim, Alin</creator><creator>Altinkaya, Mustafa A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0982-7798</orcidid><orcidid>https://orcid.org/0000-0001-8048-5850</orcidid><orcidid>https://orcid.org/0000-0001-8009-9319</orcidid></search><sort><creationdate>2022</creationdate><title>Cauchy-Rician Model for Backscattering in Urban SAR Images</title><author>Karakus, Oktay ; Kuruoglu, Ercan E. ; Achim, Alin ; Altinkaya, Mustafa A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-86e3ea18c384190b2b7205d3a8f1e43dbaf4097ec086d64dbe8c1b14714406433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Backscatter</topic><topic>Backscattering</topic><topic>Cauchy–Rician distribution</topic><topic>Distribution</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Numerical analysis</topic><topic>Numerical models</topic><topic>Probability density function</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>Reflectors</topic><topic>Rician channels</topic><topic>SAR (radar)</topic><topic>Scattering</topic><topic>Sea surface</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR) imaging</topic><topic>Urban areas</topic><topic>urban modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karakus, Oktay</creatorcontrib><creatorcontrib>Kuruoglu, Ercan E.</creatorcontrib><creatorcontrib>Achim, Alin</creatorcontrib><creatorcontrib>Altinkaya, Mustafa A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karakus, Oktay</au><au>Kuruoglu, Ercan E.</au><au>Achim, Alin</au><au>Altinkaya, Mustafa A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cauchy-Rician Model for Backscattering in Urban SAR Images</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>This letter presents a new statistical model for urban scene synthetic aperture radar (SAR) images by combining the Cauchy distribution, which is heavy tailed, with the Rician backscattering. The literature spans various well-known models most of which are derived under the assumption that the scene consists of multitudes of random reflectors. This idea specifically fails for urban scenes since they accommodate a heterogeneous collection of strong scatterers such as buildings, cars, and wall corners. Moreover, when it comes to analyzing their statistical behavior, due to these strong reflectors, urban scenes include a high number of high amplitude samples, which implies that urban scenes are mostly heavy-tailed. The proposed Cauchy-Rician model contributes to the literature by leveraging nonzero location (Rician) heavy-tailed (Cauchy) signal components. In the experimental analysis, the Cauchy-Rician model is investigated in comparison to state-of-the-art statistical models that include &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mathcal {G}_{0} &lt;/tex-math&gt;&lt;/inline-formula&gt;, generalized gamma, and the lognormal distribution. The numerical analysis demonstrates the superior performance and flexibility of the proposed distribution for modeling urban scenes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2022.3146370</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0982-7798</orcidid><orcidid>https://orcid.org/0000-0001-8048-5850</orcidid><orcidid>https://orcid.org/0000-0001-8009-9319</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2022_3146370
source IEEE Electronic Library (IEL)
subjects Backscatter
Backscattering
Cauchy–Rician distribution
Distribution
Mathematical models
Modelling
Numerical analysis
Numerical models
Probability density function
Radar imaging
Radar polarimetry
Reflectors
Rician channels
SAR (radar)
Scattering
Sea surface
Statistical analysis
Statistical methods
Statistical models
Synthetic aperture radar
synthetic aperture radar (SAR) imaging
Urban areas
urban modeling
title Cauchy-Rician Model for Backscattering in Urban SAR Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cauchy-Rician%20Model%20for%20Backscattering%20in%20Urban%20SAR%20Images&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Karakus,%20Oktay&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2022.3146370&rft_dat=%3Cproquest_RIE%3E2635043716%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635043716&rft_id=info:pmid/&rft_ieee_id=9693957&rfr_iscdi=true