Cauchy-Rician Model for Backscattering in Urban SAR Images
This letter presents a new statistical model for urban scene synthetic aperture radar (SAR) images by combining the Cauchy distribution, which is heavy tailed, with the Rician backscattering. The literature spans various well-known models most of which are derived under the assumption that the scene...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 19 |
creator | Karakus, Oktay Kuruoglu, Ercan E. Achim, Alin Altinkaya, Mustafa A. |
description | This letter presents a new statistical model for urban scene synthetic aperture radar (SAR) images by combining the Cauchy distribution, which is heavy tailed, with the Rician backscattering. The literature spans various well-known models most of which are derived under the assumption that the scene consists of multitudes of random reflectors. This idea specifically fails for urban scenes since they accommodate a heterogeneous collection of strong scatterers such as buildings, cars, and wall corners. Moreover, when it comes to analyzing their statistical behavior, due to these strong reflectors, urban scenes include a high number of high amplitude samples, which implies that urban scenes are mostly heavy-tailed. The proposed Cauchy-Rician model contributes to the literature by leveraging nonzero location (Rician) heavy-tailed (Cauchy) signal components. In the experimental analysis, the Cauchy-Rician model is investigated in comparison to state-of-the-art statistical models that include \mathcal {G}_{0} , generalized gamma, and the lognormal distribution. The numerical analysis demonstrates the superior performance and flexibility of the proposed distribution for modeling urban scenes. |
doi_str_mv | 10.1109/LGRS.2022.3146370 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2022_3146370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9693957</ieee_id><sourcerecordid>2635043716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-86e3ea18c384190b2b7205d3a8f1e43dbaf4097ec086d64dbe8c1b14714406433</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFZ_gLgJuE59L_PtrhathYrQWnA3TCaTmtomOpMu-u9NaHH17uLc--AQcoswQgT9MJ8ulqMMsmxEkQkq4YwMkHOVApd43mfGU67V5yW5inEDkDGl5IA8TuzefR3SReUqWydvTeG3SdmE5Mm67-hs2_pQ1eukqpNVyDtiOV4ks51d-3hNLkq7jf7mdIdk9fL8MXlN5-_T2WQ8Tx2lok2V8NRbVI4qhhryLJcZ8IJaVaJntMhtyUBL70CJQrAi98phjkwiYyAYpUNyf9z9Cc3v3sfWbJp9qLuXJhOUA6MSRUfhkXKhiTH40vyEamfDwSCYXpHpFZlekTkp6jp3x07lvf_ntdBUc0n_AKOIX_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635043716</pqid></control><display><type>article</type><title>Cauchy-Rician Model for Backscattering in Urban SAR Images</title><source>IEEE Electronic Library (IEL)</source><creator>Karakus, Oktay ; Kuruoglu, Ercan E. ; Achim, Alin ; Altinkaya, Mustafa A.</creator><creatorcontrib>Karakus, Oktay ; Kuruoglu, Ercan E. ; Achim, Alin ; Altinkaya, Mustafa A.</creatorcontrib><description>This letter presents a new statistical model for urban scene synthetic aperture radar (SAR) images by combining the Cauchy distribution, which is heavy tailed, with the Rician backscattering. The literature spans various well-known models most of which are derived under the assumption that the scene consists of multitudes of random reflectors. This idea specifically fails for urban scenes since they accommodate a heterogeneous collection of strong scatterers such as buildings, cars, and wall corners. Moreover, when it comes to analyzing their statistical behavior, due to these strong reflectors, urban scenes include a high number of high amplitude samples, which implies that urban scenes are mostly heavy-tailed. The proposed Cauchy-Rician model contributes to the literature by leveraging nonzero location (Rician) heavy-tailed (Cauchy) signal components. In the experimental analysis, the Cauchy-Rician model is investigated in comparison to state-of-the-art statistical models that include <inline-formula> <tex-math notation="LaTeX">\mathcal {G}_{0} </tex-math></inline-formula>, generalized gamma, and the lognormal distribution. The numerical analysis demonstrates the superior performance and flexibility of the proposed distribution for modeling urban scenes.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2022.3146370</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Backscatter ; Backscattering ; Cauchy–Rician distribution ; Distribution ; Mathematical models ; Modelling ; Numerical analysis ; Numerical models ; Probability density function ; Radar imaging ; Radar polarimetry ; Reflectors ; Rician channels ; SAR (radar) ; Scattering ; Sea surface ; Statistical analysis ; Statistical methods ; Statistical models ; Synthetic aperture radar ; synthetic aperture radar (SAR) imaging ; Urban areas ; urban modeling</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-86e3ea18c384190b2b7205d3a8f1e43dbaf4097ec086d64dbe8c1b14714406433</citedby><cites>FETCH-LOGICAL-c336t-86e3ea18c384190b2b7205d3a8f1e43dbaf4097ec086d64dbe8c1b14714406433</cites><orcidid>0000-0002-0982-7798 ; 0000-0001-8048-5850 ; 0000-0001-8009-9319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9693957$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,4012,27906,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9693957$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karakus, Oktay</creatorcontrib><creatorcontrib>Kuruoglu, Ercan E.</creatorcontrib><creatorcontrib>Achim, Alin</creatorcontrib><creatorcontrib>Altinkaya, Mustafa A.</creatorcontrib><title>Cauchy-Rician Model for Backscattering in Urban SAR Images</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>This letter presents a new statistical model for urban scene synthetic aperture radar (SAR) images by combining the Cauchy distribution, which is heavy tailed, with the Rician backscattering. The literature spans various well-known models most of which are derived under the assumption that the scene consists of multitudes of random reflectors. This idea specifically fails for urban scenes since they accommodate a heterogeneous collection of strong scatterers such as buildings, cars, and wall corners. Moreover, when it comes to analyzing their statistical behavior, due to these strong reflectors, urban scenes include a high number of high amplitude samples, which implies that urban scenes are mostly heavy-tailed. The proposed Cauchy-Rician model contributes to the literature by leveraging nonzero location (Rician) heavy-tailed (Cauchy) signal components. In the experimental analysis, the Cauchy-Rician model is investigated in comparison to state-of-the-art statistical models that include <inline-formula> <tex-math notation="LaTeX">\mathcal {G}_{0} </tex-math></inline-formula>, generalized gamma, and the lognormal distribution. The numerical analysis demonstrates the superior performance and flexibility of the proposed distribution for modeling urban scenes.</description><subject>Backscatter</subject><subject>Backscattering</subject><subject>Cauchy–Rician distribution</subject><subject>Distribution</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Numerical analysis</subject><subject>Numerical models</subject><subject>Probability density function</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>Reflectors</subject><subject>Rician channels</subject><subject>SAR (radar)</subject><subject>Scattering</subject><subject>Sea surface</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR) imaging</subject><subject>Urban areas</subject><subject>urban modeling</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AURQdRsFZ_gLgJuE59L_PtrhathYrQWnA3TCaTmtomOpMu-u9NaHH17uLc--AQcoswQgT9MJ8ulqMMsmxEkQkq4YwMkHOVApd43mfGU67V5yW5inEDkDGl5IA8TuzefR3SReUqWydvTeG3SdmE5Mm67-hs2_pQ1eukqpNVyDtiOV4ks51d-3hNLkq7jf7mdIdk9fL8MXlN5-_T2WQ8Tx2lok2V8NRbVI4qhhryLJcZ8IJaVaJntMhtyUBL70CJQrAi98phjkwiYyAYpUNyf9z9Cc3v3sfWbJp9qLuXJhOUA6MSRUfhkXKhiTH40vyEamfDwSCYXpHpFZlekTkp6jp3x07lvf_ntdBUc0n_AKOIX_Q</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Karakus, Oktay</creator><creator>Kuruoglu, Ercan E.</creator><creator>Achim, Alin</creator><creator>Altinkaya, Mustafa A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0982-7798</orcidid><orcidid>https://orcid.org/0000-0001-8048-5850</orcidid><orcidid>https://orcid.org/0000-0001-8009-9319</orcidid></search><sort><creationdate>2022</creationdate><title>Cauchy-Rician Model for Backscattering in Urban SAR Images</title><author>Karakus, Oktay ; Kuruoglu, Ercan E. ; Achim, Alin ; Altinkaya, Mustafa A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-86e3ea18c384190b2b7205d3a8f1e43dbaf4097ec086d64dbe8c1b14714406433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Backscatter</topic><topic>Backscattering</topic><topic>Cauchy–Rician distribution</topic><topic>Distribution</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Numerical analysis</topic><topic>Numerical models</topic><topic>Probability density function</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>Reflectors</topic><topic>Rician channels</topic><topic>SAR (radar)</topic><topic>Scattering</topic><topic>Sea surface</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR) imaging</topic><topic>Urban areas</topic><topic>urban modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karakus, Oktay</creatorcontrib><creatorcontrib>Kuruoglu, Ercan E.</creatorcontrib><creatorcontrib>Achim, Alin</creatorcontrib><creatorcontrib>Altinkaya, Mustafa A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karakus, Oktay</au><au>Kuruoglu, Ercan E.</au><au>Achim, Alin</au><au>Altinkaya, Mustafa A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cauchy-Rician Model for Backscattering in Urban SAR Images</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>This letter presents a new statistical model for urban scene synthetic aperture radar (SAR) images by combining the Cauchy distribution, which is heavy tailed, with the Rician backscattering. The literature spans various well-known models most of which are derived under the assumption that the scene consists of multitudes of random reflectors. This idea specifically fails for urban scenes since they accommodate a heterogeneous collection of strong scatterers such as buildings, cars, and wall corners. Moreover, when it comes to analyzing their statistical behavior, due to these strong reflectors, urban scenes include a high number of high amplitude samples, which implies that urban scenes are mostly heavy-tailed. The proposed Cauchy-Rician model contributes to the literature by leveraging nonzero location (Rician) heavy-tailed (Cauchy) signal components. In the experimental analysis, the Cauchy-Rician model is investigated in comparison to state-of-the-art statistical models that include <inline-formula> <tex-math notation="LaTeX">\mathcal {G}_{0} </tex-math></inline-formula>, generalized gamma, and the lognormal distribution. The numerical analysis demonstrates the superior performance and flexibility of the proposed distribution for modeling urban scenes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2022.3146370</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0982-7798</orcidid><orcidid>https://orcid.org/0000-0001-8048-5850</orcidid><orcidid>https://orcid.org/0000-0001-8009-9319</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2022_3146370 |
source | IEEE Electronic Library (IEL) |
subjects | Backscatter Backscattering Cauchy–Rician distribution Distribution Mathematical models Modelling Numerical analysis Numerical models Probability density function Radar imaging Radar polarimetry Reflectors Rician channels SAR (radar) Scattering Sea surface Statistical analysis Statistical methods Statistical models Synthetic aperture radar synthetic aperture radar (SAR) imaging Urban areas urban modeling |
title | Cauchy-Rician Model for Backscattering in Urban SAR Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cauchy-Rician%20Model%20for%20Backscattering%20in%20Urban%20SAR%20Images&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Karakus,%20Oktay&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2022.3146370&rft_dat=%3Cproquest_RIE%3E2635043716%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635043716&rft_id=info:pmid/&rft_ieee_id=9693957&rfr_iscdi=true |