Phenology of Phytoplankton Size Classes in the Arabian Sea

Phytoplankton size classes (PSC) patterns are distinctive, tightly coupled to environmental controls of the upper ocean layer, with sensitiveness toward the seasonal cycle. This letter focuses on the phenology of PSC to investigate the spatiotemporal assemblage of each PSC influenced by the environm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Hauptverfasser: Shunmugapandi, Rebekah, Gedam, Shirishkumar, Inamdar, Arun B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 19
creator Shunmugapandi, Rebekah
Gedam, Shirishkumar
Inamdar, Arun B
description Phytoplankton size classes (PSC) patterns are distinctive, tightly coupled to environmental controls of the upper ocean layer, with sensitiveness toward the seasonal cycle. This letter focuses on the phenology of PSC to investigate the spatiotemporal assemblage of each PSC influenced by the environmental drivers over the Arabian Sea (AS). We applied an abundance-based approach on 16-year time series gap-filled satellite-derived chl- a products to retrieve the PSC. Further, we estimated the PSC phenology indices for the AS as the timing of initiation, termination, duration, peak, and mean. The threshold criterion method is used to extract and map the PSC phenology indexes. The unique environmental adaptation of each PSC on both spatial and seasonal variability is highlighted and discussed based on the connection with the sea surface temperature (SST) and mixed layered depth (MLD). From the results, a new perspective is drawn on the PSC phenology patterns in the AS and how environmental controls influence each PSC.
doi_str_mv 10.1109/LGRS.2021.3132660
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2021_3132660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9635815</ieee_id><sourcerecordid>2616718126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d90a349997d8512e4ea7ab9dba0a7bb1342df353880c31a8c2f4bbf72c3518b03</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN4EvO7MSZom8W4MncLA4RS8C0mb2s7a1KS7mE9vy4ZX54fz_efAh9A1kBkAUXer5etmRgmFGQNGs4ycoAlwLhPCBZyOOeUJV_LjHF3EuCWEplKKCbpfV671jf_cY1_idbXvfdeY9qv3Ld7Uvw4vGhOji7hucV85PA_G1mbYOXOJzkrTRHd1nFP0_vjwtnhKVi_L58V8leRUsT4pFDEsVUqJQnKgLnVGGKsKa4gR1gJLaVEyzqQkOQMjc1qm1paC5oyDtIRN0e3hbhf8z87FXm_9LrTDS00zyARIoNlAwYHKg48xuFJ3of42Ya-B6FGRHhXpUZE-Kho6N4dO7Zz751XGuATO_gCaw2Ea</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616718126</pqid></control><display><type>article</type><title>Phenology of Phytoplankton Size Classes in the Arabian Sea</title><source>IEEE Electronic Library (IEL)</source><creator>Shunmugapandi, Rebekah ; Gedam, Shirishkumar ; Inamdar, Arun B</creator><creatorcontrib>Shunmugapandi, Rebekah ; Gedam, Shirishkumar ; Inamdar, Arun B</creatorcontrib><description>Phytoplankton size classes (PSC) patterns are distinctive, tightly coupled to environmental controls of the upper ocean layer, with sensitiveness toward the seasonal cycle. This letter focuses on the phenology of PSC to investigate the spatiotemporal assemblage of each PSC influenced by the environmental drivers over the Arabian Sea (AS). We applied an abundance-based approach on 16-year time series gap-filled satellite-derived chl-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;a &lt;/tex-math&gt;&lt;/inline-formula&gt; products to retrieve the PSC. Further, we estimated the PSC phenology indices for the AS as the timing of initiation, termination, duration, peak, and mean. The threshold criterion method is used to extract and map the PSC phenology indexes. The unique environmental adaptation of each PSC on both spatial and seasonal variability is highlighted and discussed based on the connection with the sea surface temperature (SST) and mixed layered depth (MLD). From the results, a new perspective is drawn on the PSC phenology patterns in the AS and how environmental controls influence each PSC.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3132660</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Data models ; Environmental control ; Indexes ; Mixed layer depth (MLD) ; Ocean temperature ; Phenology ; Phytoplankton ; phytoplankton size classes (PSC) ; Plankton ; Satellites ; Sea surface ; Sea surface temperature ; sea surface temperature (SST) ; Seasonal variability ; Seasonal variation ; Seasonal variations ; spatio-temporal assemblage ; Surface temperature ; Time series analysis ; Timing ; Upper ocean</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d90a349997d8512e4ea7ab9dba0a7bb1342df353880c31a8c2f4bbf72c3518b03</citedby><cites>FETCH-LOGICAL-c293t-d90a349997d8512e4ea7ab9dba0a7bb1342df353880c31a8c2f4bbf72c3518b03</cites><orcidid>0000-0002-8521-7254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9635815$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9635815$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shunmugapandi, Rebekah</creatorcontrib><creatorcontrib>Gedam, Shirishkumar</creatorcontrib><creatorcontrib>Inamdar, Arun B</creatorcontrib><title>Phenology of Phytoplankton Size Classes in the Arabian Sea</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Phytoplankton size classes (PSC) patterns are distinctive, tightly coupled to environmental controls of the upper ocean layer, with sensitiveness toward the seasonal cycle. This letter focuses on the phenology of PSC to investigate the spatiotemporal assemblage of each PSC influenced by the environmental drivers over the Arabian Sea (AS). We applied an abundance-based approach on 16-year time series gap-filled satellite-derived chl-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;a &lt;/tex-math&gt;&lt;/inline-formula&gt; products to retrieve the PSC. Further, we estimated the PSC phenology indices for the AS as the timing of initiation, termination, duration, peak, and mean. The threshold criterion method is used to extract and map the PSC phenology indexes. The unique environmental adaptation of each PSC on both spatial and seasonal variability is highlighted and discussed based on the connection with the sea surface temperature (SST) and mixed layered depth (MLD). From the results, a new perspective is drawn on the PSC phenology patterns in the AS and how environmental controls influence each PSC.</description><subject>Data models</subject><subject>Environmental control</subject><subject>Indexes</subject><subject>Mixed layer depth (MLD)</subject><subject>Ocean temperature</subject><subject>Phenology</subject><subject>Phytoplankton</subject><subject>phytoplankton size classes (PSC)</subject><subject>Plankton</subject><subject>Satellites</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>sea surface temperature (SST)</subject><subject>Seasonal variability</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>spatio-temporal assemblage</subject><subject>Surface temperature</subject><subject>Time series analysis</subject><subject>Timing</subject><subject>Upper ocean</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcPIN4EvO7MSZom8W4MncLA4RS8C0mb2s7a1KS7mE9vy4ZX54fz_efAh9A1kBkAUXer5etmRgmFGQNGs4ycoAlwLhPCBZyOOeUJV_LjHF3EuCWEplKKCbpfV671jf_cY1_idbXvfdeY9qv3Ld7Uvw4vGhOji7hucV85PA_G1mbYOXOJzkrTRHd1nFP0_vjwtnhKVi_L58V8leRUsT4pFDEsVUqJQnKgLnVGGKsKa4gR1gJLaVEyzqQkOQMjc1qm1paC5oyDtIRN0e3hbhf8z87FXm_9LrTDS00zyARIoNlAwYHKg48xuFJ3of42Ya-B6FGRHhXpUZE-Kho6N4dO7Zz751XGuATO_gCaw2Ea</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Shunmugapandi, Rebekah</creator><creator>Gedam, Shirishkumar</creator><creator>Inamdar, Arun B</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8521-7254</orcidid></search><sort><creationdate>2022</creationdate><title>Phenology of Phytoplankton Size Classes in the Arabian Sea</title><author>Shunmugapandi, Rebekah ; Gedam, Shirishkumar ; Inamdar, Arun B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d90a349997d8512e4ea7ab9dba0a7bb1342df353880c31a8c2f4bbf72c3518b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data models</topic><topic>Environmental control</topic><topic>Indexes</topic><topic>Mixed layer depth (MLD)</topic><topic>Ocean temperature</topic><topic>Phenology</topic><topic>Phytoplankton</topic><topic>phytoplankton size classes (PSC)</topic><topic>Plankton</topic><topic>Satellites</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>sea surface temperature (SST)</topic><topic>Seasonal variability</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>spatio-temporal assemblage</topic><topic>Surface temperature</topic><topic>Time series analysis</topic><topic>Timing</topic><topic>Upper ocean</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shunmugapandi, Rebekah</creatorcontrib><creatorcontrib>Gedam, Shirishkumar</creatorcontrib><creatorcontrib>Inamdar, Arun B</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shunmugapandi, Rebekah</au><au>Gedam, Shirishkumar</au><au>Inamdar, Arun B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phenology of Phytoplankton Size Classes in the Arabian Sea</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Phytoplankton size classes (PSC) patterns are distinctive, tightly coupled to environmental controls of the upper ocean layer, with sensitiveness toward the seasonal cycle. This letter focuses on the phenology of PSC to investigate the spatiotemporal assemblage of each PSC influenced by the environmental drivers over the Arabian Sea (AS). We applied an abundance-based approach on 16-year time series gap-filled satellite-derived chl-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;a &lt;/tex-math&gt;&lt;/inline-formula&gt; products to retrieve the PSC. Further, we estimated the PSC phenology indices for the AS as the timing of initiation, termination, duration, peak, and mean. The threshold criterion method is used to extract and map the PSC phenology indexes. The unique environmental adaptation of each PSC on both spatial and seasonal variability is highlighted and discussed based on the connection with the sea surface temperature (SST) and mixed layered depth (MLD). From the results, a new perspective is drawn on the PSC phenology patterns in the AS and how environmental controls influence each PSC.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3132660</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8521-7254</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2021_3132660
source IEEE Electronic Library (IEL)
subjects Data models
Environmental control
Indexes
Mixed layer depth (MLD)
Ocean temperature
Phenology
Phytoplankton
phytoplankton size classes (PSC)
Plankton
Satellites
Sea surface
Sea surface temperature
sea surface temperature (SST)
Seasonal variability
Seasonal variation
Seasonal variations
spatio-temporal assemblage
Surface temperature
Time series analysis
Timing
Upper ocean
title Phenology of Phytoplankton Size Classes in the Arabian Sea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phenology%20of%20Phytoplankton%20Size%20Classes%20in%20the%20Arabian%20Sea&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Shunmugapandi,%20Rebekah&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3132660&rft_dat=%3Cproquest_RIE%3E2616718126%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616718126&rft_id=info:pmid/&rft_ieee_id=9635815&rfr_iscdi=true