Tropical Cyclone Forecast Using Multitask Deep Learning Framework
A tropical cyclone is a robust weather system that affects human daily life. Accurate and rapid tropical cyclone forecast can guide human disaster prevention and mitigation work against tropical cyclones. The mainstream tropical cyclone forecasting method is numerical forecasting, which requires abu...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 19 |
creator | Wu, Yuqiao Geng, Xiaoyi Liu, Zili Shi, Zhenwei |
description | A tropical cyclone is a robust weather system that affects human daily life. Accurate and rapid tropical cyclone forecast can guide human disaster prevention and mitigation work against tropical cyclones. The mainstream tropical cyclone forecasting method is numerical forecasting, which requires abundant prior knowledge and luxurious calculation. Nowadays, machine learning methods have received increasing attention for which they can overcome these disadvantages. However, existing machine learning methods usually ignored some potential factors since they mainly concentrated on one aspect of the tropical cyclone forecast. This letter proposes a multitask machine learning framework to forecast tropical cyclone path and intensity, which possesses two modules: one is the prediction module and the other is the estimate module. We use an improved generative adversarial network as the prediction module to predict the tropical cyclone spatial data at a certain moment in the future. Then, we use two different deep neural networks as the estimation module to extract the position and intensity from the generated prediction data. The method we propose is a general and relatively accurate tropical cyclone forecast method. We reach a 24-h path forecast error of 116 km and a 24-h intensity forecast error of 13.06 kt. |
doi_str_mv | 10.1109/LGRS.2021.3132395 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2021_3132395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9634051</ieee_id><sourcerecordid>2619024207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-17d6927b9bb0c995294e2ac66ce1aa9f0f2e5b9c371150180f2788ada28e6f1a3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwp-NyZmzRt8jimm0JF0A18C2l2K926piYdY9_elg2f7h_OuYf7I-Qe6ASAqqd88fk1YZTBhANnXIkLMgIhZExFBpdDn4hYKPl9TW5C2FDKEimzEZkuvWsra-podrS1azCaO4_WhC5ahar5id73dVd1JmyjZ8Q2ytH4ZtjPvdnhwfntLbkqTR3w7lzHZDV_Wc5e4_xj8Tab5rFlincxZOtUsaxQRUGtUoKpBJmxaWoRjFElLRmKQlmeAQgKsp8zKc3aMIlpCYaPyePpbuvd7x5Dpzdu75s-UrMUVP8Qo1mvgpPKeheCx1K3vtoZf9RA9UBKD6T0QEqfSfWeh5OnQsR_vUp5QgXwPxb9Y_I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619024207</pqid></control><display><type>article</type><title>Tropical Cyclone Forecast Using Multitask Deep Learning Framework</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Yuqiao ; Geng, Xiaoyi ; Liu, Zili ; Shi, Zhenwei</creator><creatorcontrib>Wu, Yuqiao ; Geng, Xiaoyi ; Liu, Zili ; Shi, Zhenwei</creatorcontrib><description>A tropical cyclone is a robust weather system that affects human daily life. Accurate and rapid tropical cyclone forecast can guide human disaster prevention and mitigation work against tropical cyclones. The mainstream tropical cyclone forecasting method is numerical forecasting, which requires abundant prior knowledge and luxurious calculation. Nowadays, machine learning methods have received increasing attention for which they can overcome these disadvantages. However, existing machine learning methods usually ignored some potential factors since they mainly concentrated on one aspect of the tropical cyclone forecast. This letter proposes a multitask machine learning framework to forecast tropical cyclone path and intensity, which possesses two modules: one is the prediction module and the other is the estimate module. We use an improved generative adversarial network as the prediction module to predict the tropical cyclone spatial data at a certain moment in the future. Then, we use two different deep neural networks as the estimation module to extract the position and intensity from the generated prediction data. The method we propose is a general and relatively accurate tropical cyclone forecast method. We reach a 24-h path forecast error of 116 km and a 24-h intensity forecast error of 13.06 kt.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3132395</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Cyclone forecasting ; Cyclones ; Deep learning ; Emergency preparedness ; Estimation ; Forecasting ; Generative adversarial network ; Generative adversarial networks ; Generators ; Hurricanes ; Learning algorithms ; Machine learning ; Methods ; Mitigation ; Modules ; Neural networks ; Numerical forecasting ; Predictions ; Robustness (mathematics) ; Spatial data ; Task analysis ; Tropical climate ; tropical cyclone forecast ; Tropical cyclone forecasting ; Tropical cyclone intensities ; Tropical cyclones ; Wasserstein distance ; Weather forecasting</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-17d6927b9bb0c995294e2ac66ce1aa9f0f2e5b9c371150180f2788ada28e6f1a3</citedby><cites>FETCH-LOGICAL-c293t-17d6927b9bb0c995294e2ac66ce1aa9f0f2e5b9c371150180f2788ada28e6f1a3</cites><orcidid>0000-0002-1904-5896 ; 0000-0002-4772-3172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9634051$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,4026,27930,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9634051$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Yuqiao</creatorcontrib><creatorcontrib>Geng, Xiaoyi</creatorcontrib><creatorcontrib>Liu, Zili</creatorcontrib><creatorcontrib>Shi, Zhenwei</creatorcontrib><title>Tropical Cyclone Forecast Using Multitask Deep Learning Framework</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>A tropical cyclone is a robust weather system that affects human daily life. Accurate and rapid tropical cyclone forecast can guide human disaster prevention and mitigation work against tropical cyclones. The mainstream tropical cyclone forecasting method is numerical forecasting, which requires abundant prior knowledge and luxurious calculation. Nowadays, machine learning methods have received increasing attention for which they can overcome these disadvantages. However, existing machine learning methods usually ignored some potential factors since they mainly concentrated on one aspect of the tropical cyclone forecast. This letter proposes a multitask machine learning framework to forecast tropical cyclone path and intensity, which possesses two modules: one is the prediction module and the other is the estimate module. We use an improved generative adversarial network as the prediction module to predict the tropical cyclone spatial data at a certain moment in the future. Then, we use two different deep neural networks as the estimation module to extract the position and intensity from the generated prediction data. The method we propose is a general and relatively accurate tropical cyclone forecast method. We reach a 24-h path forecast error of 116 km and a 24-h intensity forecast error of 13.06 kt.</description><subject>Artificial neural networks</subject><subject>Cyclone forecasting</subject><subject>Cyclones</subject><subject>Deep learning</subject><subject>Emergency preparedness</subject><subject>Estimation</subject><subject>Forecasting</subject><subject>Generative adversarial network</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Hurricanes</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Mitigation</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Numerical forecasting</subject><subject>Predictions</subject><subject>Robustness (mathematics)</subject><subject>Spatial data</subject><subject>Task analysis</subject><subject>Tropical climate</subject><subject>tropical cyclone forecast</subject><subject>Tropical cyclone forecasting</subject><subject>Tropical cyclone intensities</subject><subject>Tropical cyclones</subject><subject>Wasserstein distance</subject><subject>Weather forecasting</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKcfQHwp-NyZmzRt8jimm0JF0A18C2l2K926piYdY9_elg2f7h_OuYf7I-Qe6ASAqqd88fk1YZTBhANnXIkLMgIhZExFBpdDn4hYKPl9TW5C2FDKEimzEZkuvWsra-podrS1azCaO4_WhC5ahar5id73dVd1JmyjZ8Q2ytH4ZtjPvdnhwfntLbkqTR3w7lzHZDV_Wc5e4_xj8Tab5rFlincxZOtUsaxQRUGtUoKpBJmxaWoRjFElLRmKQlmeAQgKsp8zKc3aMIlpCYaPyePpbuvd7x5Dpzdu75s-UrMUVP8Qo1mvgpPKeheCx1K3vtoZf9RA9UBKD6T0QEqfSfWeh5OnQsR_vUp5QgXwPxb9Y_I</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Wu, Yuqiao</creator><creator>Geng, Xiaoyi</creator><creator>Liu, Zili</creator><creator>Shi, Zhenwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1904-5896</orcidid><orcidid>https://orcid.org/0000-0002-4772-3172</orcidid></search><sort><creationdate>2022</creationdate><title>Tropical Cyclone Forecast Using Multitask Deep Learning Framework</title><author>Wu, Yuqiao ; Geng, Xiaoyi ; Liu, Zili ; Shi, Zhenwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-17d6927b9bb0c995294e2ac66ce1aa9f0f2e5b9c371150180f2788ada28e6f1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Cyclone forecasting</topic><topic>Cyclones</topic><topic>Deep learning</topic><topic>Emergency preparedness</topic><topic>Estimation</topic><topic>Forecasting</topic><topic>Generative adversarial network</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Hurricanes</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Mitigation</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Numerical forecasting</topic><topic>Predictions</topic><topic>Robustness (mathematics)</topic><topic>Spatial data</topic><topic>Task analysis</topic><topic>Tropical climate</topic><topic>tropical cyclone forecast</topic><topic>Tropical cyclone forecasting</topic><topic>Tropical cyclone intensities</topic><topic>Tropical cyclones</topic><topic>Wasserstein distance</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yuqiao</creatorcontrib><creatorcontrib>Geng, Xiaoyi</creatorcontrib><creatorcontrib>Liu, Zili</creatorcontrib><creatorcontrib>Shi, Zhenwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Yuqiao</au><au>Geng, Xiaoyi</au><au>Liu, Zili</au><au>Shi, Zhenwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tropical Cyclone Forecast Using Multitask Deep Learning Framework</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>A tropical cyclone is a robust weather system that affects human daily life. Accurate and rapid tropical cyclone forecast can guide human disaster prevention and mitigation work against tropical cyclones. The mainstream tropical cyclone forecasting method is numerical forecasting, which requires abundant prior knowledge and luxurious calculation. Nowadays, machine learning methods have received increasing attention for which they can overcome these disadvantages. However, existing machine learning methods usually ignored some potential factors since they mainly concentrated on one aspect of the tropical cyclone forecast. This letter proposes a multitask machine learning framework to forecast tropical cyclone path and intensity, which possesses two modules: one is the prediction module and the other is the estimate module. We use an improved generative adversarial network as the prediction module to predict the tropical cyclone spatial data at a certain moment in the future. Then, we use two different deep neural networks as the estimation module to extract the position and intensity from the generated prediction data. The method we propose is a general and relatively accurate tropical cyclone forecast method. We reach a 24-h path forecast error of 116 km and a 24-h intensity forecast error of 13.06 kt.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3132395</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1904-5896</orcidid><orcidid>https://orcid.org/0000-0002-4772-3172</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2021_3132395 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Cyclone forecasting Cyclones Deep learning Emergency preparedness Estimation Forecasting Generative adversarial network Generative adversarial networks Generators Hurricanes Learning algorithms Machine learning Methods Mitigation Modules Neural networks Numerical forecasting Predictions Robustness (mathematics) Spatial data Task analysis Tropical climate tropical cyclone forecast Tropical cyclone forecasting Tropical cyclone intensities Tropical cyclones Wasserstein distance Weather forecasting |
title | Tropical Cyclone Forecast Using Multitask Deep Learning Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T00%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tropical%20Cyclone%20Forecast%20Using%20Multitask%20Deep%20Learning%20Framework&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Wu,%20Yuqiao&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3132395&rft_dat=%3Cproquest_RIE%3E2619024207%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619024207&rft_id=info:pmid/&rft_ieee_id=9634051&rfr_iscdi=true |