DBRANet: Road Extraction by Dual-Branch Encoder and Regional Attention Decoder

Although widely exploited in recent decades, road extraction is still a very significant and challenging research in the field of remote sensing image processing due to the complex background and road distribution. Among the existing CNN-based methods, U-shape architectures composed of encoders and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Hauptverfasser: Chen, Si-Bao, Ji, Yu-Xin, Tang, Jin, Luo, Bin, Wang, Wei-Qiang, Lv, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 19
creator Chen, Si-Bao
Ji, Yu-Xin
Tang, Jin
Luo, Bin
Wang, Wei-Qiang
Lv, Ke
description Although widely exploited in recent decades, road extraction is still a very significant and challenging research in the field of remote sensing image processing due to the complex background and road distribution. Among the existing CNN-based methods, U-shape architectures composed of encoders and decoders have shown their effectiveness. In this letter, we propose an improved encoder-decoder method, named DBRANet, for extracting roads from remote sensing images. In the encoding phase, we present a dual-branch network module (DBNM) to construct more effective features, thus improving the fusion feature maps of different scales. One branch utilizes the residual block, and the other branch utilizes the refined asymmetric block, which effectively increases the feature extraction capability of the backbone. In the decoding phase, considering the sinuous shape and the unbalanced distribution of roads in remote sensing images, we design a novel attention module, named the regional attention network module (RANM), to automatically learn the importance of each channel according to the regional information. Extensive experiments on several public remote sensing road data sets show that our DBRANet achieves higher segmentation [ F1 score and Intersection over Union (IoU)] and connectivity [average path length similarity (APLS)] accuracy, which verifies the effectiveness of our approach.
doi_str_mv 10.1109/LGRS.2021.3074524
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2021_3074524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9420153</ieee_id><sourcerecordid>2610183194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6c316a490039ba96b8e53d724457c52063e2c12c95fde17fc84800d01c0418713</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6sx_JrrfW1iqUClHB27LdbLSlJnU3BfvvTdriaV6Y5x2Gh5BrhAEi6LvZNH8dMGA44JAJycQJ6aGUKgGZ4WmXhUykVh_n5CLGFQATSmU9Mh-P8uHcN_c0r21BJ79NsK5Z1hVd7Oh4a9fJKNjKfdFJ5erCB2qrgub-syXsmg6bxld7euz360tyVtp19FfH2Sfvj5O3h6dk9jJ9fhjOEsc0b5LUcUyt0ABcL6xOF8pLXmRMCJk5ySDlnjlkTsuy8JiVTgkFUAA6EKgy5H1ye7i7CfXP1sfGrOptaF-KhqUIqDhq0VJ4oFyoYwy-NJuw_LZhZxBMp8102kynzRy1tZ2bQ2fpvf_ntWCAkvM_HHdmNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610183194</pqid></control><display><type>article</type><title>DBRANet: Road Extraction by Dual-Branch Encoder and Regional Attention Decoder</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Si-Bao ; Ji, Yu-Xin ; Tang, Jin ; Luo, Bin ; Wang, Wei-Qiang ; Lv, Ke</creator><creatorcontrib>Chen, Si-Bao ; Ji, Yu-Xin ; Tang, Jin ; Luo, Bin ; Wang, Wei-Qiang ; Lv, Ke</creatorcontrib><description>Although widely exploited in recent decades, road extraction is still a very significant and challenging research in the field of remote sensing image processing due to the complex background and road distribution. Among the existing CNN-based methods, U-shape architectures composed of encoders and decoders have shown their effectiveness. In this letter, we propose an improved encoder-decoder method, named DBRANet, for extracting roads from remote sensing images. In the encoding phase, we present a dual-branch network module (DBNM) to construct more effective features, thus improving the fusion feature maps of different scales. One branch utilizes the residual block, and the other branch utilizes the refined asymmetric block, which effectively increases the feature extraction capability of the backbone. In the decoding phase, considering the sinuous shape and the unbalanced distribution of roads in remote sensing images, we design a novel attention module, named the regional attention network module (RANM), to automatically learn the importance of each channel according to the regional information. Extensive experiments on several public remote sensing road data sets show that our DBRANet achieves higher segmentation [&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;F1 &lt;/tex-math&gt;&lt;/inline-formula&gt; score and Intersection over Union (IoU)] and connectivity [average path length similarity (APLS)] accuracy, which verifies the effectiveness of our approach.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3074524</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Attention module ; Coders ; convolutional neural network (CNN) ; Decoders ; Decoding ; Distribution ; Feature extraction ; Feature maps ; Image processing ; Image segmentation ; Kernel ; Modules ; Remote sensing ; road extraction ; Roads ; Roads &amp; highways ; Shape ; Task analysis</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6c316a490039ba96b8e53d724457c52063e2c12c95fde17fc84800d01c0418713</citedby><cites>FETCH-LOGICAL-c293t-6c316a490039ba96b8e53d724457c52063e2c12c95fde17fc84800d01c0418713</cites><orcidid>0000-0003-1481-0162 ; 0000-0002-7185-2804 ; 0000-0001-5699-6167 ; 0000-0001-8375-3590 ; 0000-0003-0176-3088 ; 0000-0001-5948-5055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9420153$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9420153$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Si-Bao</creatorcontrib><creatorcontrib>Ji, Yu-Xin</creatorcontrib><creatorcontrib>Tang, Jin</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><creatorcontrib>Wang, Wei-Qiang</creatorcontrib><creatorcontrib>Lv, Ke</creatorcontrib><title>DBRANet: Road Extraction by Dual-Branch Encoder and Regional Attention Decoder</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Although widely exploited in recent decades, road extraction is still a very significant and challenging research in the field of remote sensing image processing due to the complex background and road distribution. Among the existing CNN-based methods, U-shape architectures composed of encoders and decoders have shown their effectiveness. In this letter, we propose an improved encoder-decoder method, named DBRANet, for extracting roads from remote sensing images. In the encoding phase, we present a dual-branch network module (DBNM) to construct more effective features, thus improving the fusion feature maps of different scales. One branch utilizes the residual block, and the other branch utilizes the refined asymmetric block, which effectively increases the feature extraction capability of the backbone. In the decoding phase, considering the sinuous shape and the unbalanced distribution of roads in remote sensing images, we design a novel attention module, named the regional attention network module (RANM), to automatically learn the importance of each channel according to the regional information. Extensive experiments on several public remote sensing road data sets show that our DBRANet achieves higher segmentation [&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;F1 &lt;/tex-math&gt;&lt;/inline-formula&gt; score and Intersection over Union (IoU)] and connectivity [average path length similarity (APLS)] accuracy, which verifies the effectiveness of our approach.</description><subject>Attention module</subject><subject>Coders</subject><subject>convolutional neural network (CNN)</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Distribution</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Kernel</subject><subject>Modules</subject><subject>Remote sensing</subject><subject>road extraction</subject><subject>Roads</subject><subject>Roads &amp; highways</subject><subject>Shape</subject><subject>Task analysis</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6sx_JrrfW1iqUClHB27LdbLSlJnU3BfvvTdriaV6Y5x2Gh5BrhAEi6LvZNH8dMGA44JAJycQJ6aGUKgGZ4WmXhUykVh_n5CLGFQATSmU9Mh-P8uHcN_c0r21BJ79NsK5Z1hVd7Oh4a9fJKNjKfdFJ5erCB2qrgub-syXsmg6bxld7euz360tyVtp19FfH2Sfvj5O3h6dk9jJ9fhjOEsc0b5LUcUyt0ABcL6xOF8pLXmRMCJk5ySDlnjlkTsuy8JiVTgkFUAA6EKgy5H1ye7i7CfXP1sfGrOptaF-KhqUIqDhq0VJ4oFyoYwy-NJuw_LZhZxBMp8102kynzRy1tZ2bQ2fpvf_ntWCAkvM_HHdmNg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Chen, Si-Bao</creator><creator>Ji, Yu-Xin</creator><creator>Tang, Jin</creator><creator>Luo, Bin</creator><creator>Wang, Wei-Qiang</creator><creator>Lv, Ke</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1481-0162</orcidid><orcidid>https://orcid.org/0000-0002-7185-2804</orcidid><orcidid>https://orcid.org/0000-0001-5699-6167</orcidid><orcidid>https://orcid.org/0000-0001-8375-3590</orcidid><orcidid>https://orcid.org/0000-0003-0176-3088</orcidid><orcidid>https://orcid.org/0000-0001-5948-5055</orcidid></search><sort><creationdate>2022</creationdate><title>DBRANet: Road Extraction by Dual-Branch Encoder and Regional Attention Decoder</title><author>Chen, Si-Bao ; Ji, Yu-Xin ; Tang, Jin ; Luo, Bin ; Wang, Wei-Qiang ; Lv, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6c316a490039ba96b8e53d724457c52063e2c12c95fde17fc84800d01c0418713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Attention module</topic><topic>Coders</topic><topic>convolutional neural network (CNN)</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Distribution</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Kernel</topic><topic>Modules</topic><topic>Remote sensing</topic><topic>road extraction</topic><topic>Roads</topic><topic>Roads &amp; highways</topic><topic>Shape</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Si-Bao</creatorcontrib><creatorcontrib>Ji, Yu-Xin</creatorcontrib><creatorcontrib>Tang, Jin</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><creatorcontrib>Wang, Wei-Qiang</creatorcontrib><creatorcontrib>Lv, Ke</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Si-Bao</au><au>Ji, Yu-Xin</au><au>Tang, Jin</au><au>Luo, Bin</au><au>Wang, Wei-Qiang</au><au>Lv, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DBRANet: Road Extraction by Dual-Branch Encoder and Regional Attention Decoder</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Although widely exploited in recent decades, road extraction is still a very significant and challenging research in the field of remote sensing image processing due to the complex background and road distribution. Among the existing CNN-based methods, U-shape architectures composed of encoders and decoders have shown their effectiveness. In this letter, we propose an improved encoder-decoder method, named DBRANet, for extracting roads from remote sensing images. In the encoding phase, we present a dual-branch network module (DBNM) to construct more effective features, thus improving the fusion feature maps of different scales. One branch utilizes the residual block, and the other branch utilizes the refined asymmetric block, which effectively increases the feature extraction capability of the backbone. In the decoding phase, considering the sinuous shape and the unbalanced distribution of roads in remote sensing images, we design a novel attention module, named the regional attention network module (RANM), to automatically learn the importance of each channel according to the regional information. Extensive experiments on several public remote sensing road data sets show that our DBRANet achieves higher segmentation [&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;F1 &lt;/tex-math&gt;&lt;/inline-formula&gt; score and Intersection over Union (IoU)] and connectivity [average path length similarity (APLS)] accuracy, which verifies the effectiveness of our approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3074524</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1481-0162</orcidid><orcidid>https://orcid.org/0000-0002-7185-2804</orcidid><orcidid>https://orcid.org/0000-0001-5699-6167</orcidid><orcidid>https://orcid.org/0000-0001-8375-3590</orcidid><orcidid>https://orcid.org/0000-0003-0176-3088</orcidid><orcidid>https://orcid.org/0000-0001-5948-5055</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2021_3074524
source IEEE Electronic Library (IEL)
subjects Attention module
Coders
convolutional neural network (CNN)
Decoders
Decoding
Distribution
Feature extraction
Feature maps
Image processing
Image segmentation
Kernel
Modules
Remote sensing
road extraction
Roads
Roads & highways
Shape
Task analysis
title DBRANet: Road Extraction by Dual-Branch Encoder and Regional Attention Decoder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DBRANet:%20Road%20Extraction%20by%20Dual-Branch%20Encoder%20and%20Regional%20Attention%20Decoder&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Chen,%20Si-Bao&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3074524&rft_dat=%3Cproquest_RIE%3E2610183194%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610183194&rft_id=info:pmid/&rft_ieee_id=9420153&rfr_iscdi=true