DBRANet: Road Extraction by Dual-Branch Encoder and Regional Attention Decoder
Although widely exploited in recent decades, road extraction is still a very significant and challenging research in the field of remote sensing image processing due to the complex background and road distribution. Among the existing CNN-based methods, U-shape architectures composed of encoders and...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 19 |
creator | Chen, Si-Bao Ji, Yu-Xin Tang, Jin Luo, Bin Wang, Wei-Qiang Lv, Ke |
description | Although widely exploited in recent decades, road extraction is still a very significant and challenging research in the field of remote sensing image processing due to the complex background and road distribution. Among the existing CNN-based methods, U-shape architectures composed of encoders and decoders have shown their effectiveness. In this letter, we propose an improved encoder-decoder method, named DBRANet, for extracting roads from remote sensing images. In the encoding phase, we present a dual-branch network module (DBNM) to construct more effective features, thus improving the fusion feature maps of different scales. One branch utilizes the residual block, and the other branch utilizes the refined asymmetric block, which effectively increases the feature extraction capability of the backbone. In the decoding phase, considering the sinuous shape and the unbalanced distribution of roads in remote sensing images, we design a novel attention module, named the regional attention network module (RANM), to automatically learn the importance of each channel according to the regional information. Extensive experiments on several public remote sensing road data sets show that our DBRANet achieves higher segmentation [ F1 score and Intersection over Union (IoU)] and connectivity [average path length similarity (APLS)] accuracy, which verifies the effectiveness of our approach. |
doi_str_mv | 10.1109/LGRS.2021.3074524 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2021_3074524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9420153</ieee_id><sourcerecordid>2610183194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6c316a490039ba96b8e53d724457c52063e2c12c95fde17fc84800d01c0418713</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6sx_JrrfW1iqUClHB27LdbLSlJnU3BfvvTdriaV6Y5x2Gh5BrhAEi6LvZNH8dMGA44JAJycQJ6aGUKgGZ4WmXhUykVh_n5CLGFQATSmU9Mh-P8uHcN_c0r21BJ79NsK5Z1hVd7Oh4a9fJKNjKfdFJ5erCB2qrgub-syXsmg6bxld7euz360tyVtp19FfH2Sfvj5O3h6dk9jJ9fhjOEsc0b5LUcUyt0ABcL6xOF8pLXmRMCJk5ySDlnjlkTsuy8JiVTgkFUAA6EKgy5H1ye7i7CfXP1sfGrOptaF-KhqUIqDhq0VJ4oFyoYwy-NJuw_LZhZxBMp8102kynzRy1tZ2bQ2fpvf_ntWCAkvM_HHdmNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610183194</pqid></control><display><type>article</type><title>DBRANet: Road Extraction by Dual-Branch Encoder and Regional Attention Decoder</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Si-Bao ; Ji, Yu-Xin ; Tang, Jin ; Luo, Bin ; Wang, Wei-Qiang ; Lv, Ke</creator><creatorcontrib>Chen, Si-Bao ; Ji, Yu-Xin ; Tang, Jin ; Luo, Bin ; Wang, Wei-Qiang ; Lv, Ke</creatorcontrib><description>Although widely exploited in recent decades, road extraction is still a very significant and challenging research in the field of remote sensing image processing due to the complex background and road distribution. Among the existing CNN-based methods, U-shape architectures composed of encoders and decoders have shown their effectiveness. In this letter, we propose an improved encoder-decoder method, named DBRANet, for extracting roads from remote sensing images. In the encoding phase, we present a dual-branch network module (DBNM) to construct more effective features, thus improving the fusion feature maps of different scales. One branch utilizes the residual block, and the other branch utilizes the refined asymmetric block, which effectively increases the feature extraction capability of the backbone. In the decoding phase, considering the sinuous shape and the unbalanced distribution of roads in remote sensing images, we design a novel attention module, named the regional attention network module (RANM), to automatically learn the importance of each channel according to the regional information. Extensive experiments on several public remote sensing road data sets show that our DBRANet achieves higher segmentation [<inline-formula> <tex-math notation="LaTeX">F1 </tex-math></inline-formula> score and Intersection over Union (IoU)] and connectivity [average path length similarity (APLS)] accuracy, which verifies the effectiveness of our approach.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3074524</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Attention module ; Coders ; convolutional neural network (CNN) ; Decoders ; Decoding ; Distribution ; Feature extraction ; Feature maps ; Image processing ; Image segmentation ; Kernel ; Modules ; Remote sensing ; road extraction ; Roads ; Roads & highways ; Shape ; Task analysis</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6c316a490039ba96b8e53d724457c52063e2c12c95fde17fc84800d01c0418713</citedby><cites>FETCH-LOGICAL-c293t-6c316a490039ba96b8e53d724457c52063e2c12c95fde17fc84800d01c0418713</cites><orcidid>0000-0003-1481-0162 ; 0000-0002-7185-2804 ; 0000-0001-5699-6167 ; 0000-0001-8375-3590 ; 0000-0003-0176-3088 ; 0000-0001-5948-5055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9420153$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9420153$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Si-Bao</creatorcontrib><creatorcontrib>Ji, Yu-Xin</creatorcontrib><creatorcontrib>Tang, Jin</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><creatorcontrib>Wang, Wei-Qiang</creatorcontrib><creatorcontrib>Lv, Ke</creatorcontrib><title>DBRANet: Road Extraction by Dual-Branch Encoder and Regional Attention Decoder</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Although widely exploited in recent decades, road extraction is still a very significant and challenging research in the field of remote sensing image processing due to the complex background and road distribution. Among the existing CNN-based methods, U-shape architectures composed of encoders and decoders have shown their effectiveness. In this letter, we propose an improved encoder-decoder method, named DBRANet, for extracting roads from remote sensing images. In the encoding phase, we present a dual-branch network module (DBNM) to construct more effective features, thus improving the fusion feature maps of different scales. One branch utilizes the residual block, and the other branch utilizes the refined asymmetric block, which effectively increases the feature extraction capability of the backbone. In the decoding phase, considering the sinuous shape and the unbalanced distribution of roads in remote sensing images, we design a novel attention module, named the regional attention network module (RANM), to automatically learn the importance of each channel according to the regional information. Extensive experiments on several public remote sensing road data sets show that our DBRANet achieves higher segmentation [<inline-formula> <tex-math notation="LaTeX">F1 </tex-math></inline-formula> score and Intersection over Union (IoU)] and connectivity [average path length similarity (APLS)] accuracy, which verifies the effectiveness of our approach.</description><subject>Attention module</subject><subject>Coders</subject><subject>convolutional neural network (CNN)</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Distribution</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Kernel</subject><subject>Modules</subject><subject>Remote sensing</subject><subject>road extraction</subject><subject>Roads</subject><subject>Roads & highways</subject><subject>Shape</subject><subject>Task analysis</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6sx_JrrfW1iqUClHB27LdbLSlJnU3BfvvTdriaV6Y5x2Gh5BrhAEi6LvZNH8dMGA44JAJycQJ6aGUKgGZ4WmXhUykVh_n5CLGFQATSmU9Mh-P8uHcN_c0r21BJ79NsK5Z1hVd7Oh4a9fJKNjKfdFJ5erCB2qrgub-syXsmg6bxld7euz360tyVtp19FfH2Sfvj5O3h6dk9jJ9fhjOEsc0b5LUcUyt0ABcL6xOF8pLXmRMCJk5ySDlnjlkTsuy8JiVTgkFUAA6EKgy5H1ye7i7CfXP1sfGrOptaF-KhqUIqDhq0VJ4oFyoYwy-NJuw_LZhZxBMp8102kynzRy1tZ2bQ2fpvf_ntWCAkvM_HHdmNg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Chen, Si-Bao</creator><creator>Ji, Yu-Xin</creator><creator>Tang, Jin</creator><creator>Luo, Bin</creator><creator>Wang, Wei-Qiang</creator><creator>Lv, Ke</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1481-0162</orcidid><orcidid>https://orcid.org/0000-0002-7185-2804</orcidid><orcidid>https://orcid.org/0000-0001-5699-6167</orcidid><orcidid>https://orcid.org/0000-0001-8375-3590</orcidid><orcidid>https://orcid.org/0000-0003-0176-3088</orcidid><orcidid>https://orcid.org/0000-0001-5948-5055</orcidid></search><sort><creationdate>2022</creationdate><title>DBRANet: Road Extraction by Dual-Branch Encoder and Regional Attention Decoder</title><author>Chen, Si-Bao ; Ji, Yu-Xin ; Tang, Jin ; Luo, Bin ; Wang, Wei-Qiang ; Lv, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6c316a490039ba96b8e53d724457c52063e2c12c95fde17fc84800d01c0418713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Attention module</topic><topic>Coders</topic><topic>convolutional neural network (CNN)</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Distribution</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Kernel</topic><topic>Modules</topic><topic>Remote sensing</topic><topic>road extraction</topic><topic>Roads</topic><topic>Roads & highways</topic><topic>Shape</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Si-Bao</creatorcontrib><creatorcontrib>Ji, Yu-Xin</creatorcontrib><creatorcontrib>Tang, Jin</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><creatorcontrib>Wang, Wei-Qiang</creatorcontrib><creatorcontrib>Lv, Ke</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Si-Bao</au><au>Ji, Yu-Xin</au><au>Tang, Jin</au><au>Luo, Bin</au><au>Wang, Wei-Qiang</au><au>Lv, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DBRANet: Road Extraction by Dual-Branch Encoder and Regional Attention Decoder</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Although widely exploited in recent decades, road extraction is still a very significant and challenging research in the field of remote sensing image processing due to the complex background and road distribution. Among the existing CNN-based methods, U-shape architectures composed of encoders and decoders have shown their effectiveness. In this letter, we propose an improved encoder-decoder method, named DBRANet, for extracting roads from remote sensing images. In the encoding phase, we present a dual-branch network module (DBNM) to construct more effective features, thus improving the fusion feature maps of different scales. One branch utilizes the residual block, and the other branch utilizes the refined asymmetric block, which effectively increases the feature extraction capability of the backbone. In the decoding phase, considering the sinuous shape and the unbalanced distribution of roads in remote sensing images, we design a novel attention module, named the regional attention network module (RANM), to automatically learn the importance of each channel according to the regional information. Extensive experiments on several public remote sensing road data sets show that our DBRANet achieves higher segmentation [<inline-formula> <tex-math notation="LaTeX">F1 </tex-math></inline-formula> score and Intersection over Union (IoU)] and connectivity [average path length similarity (APLS)] accuracy, which verifies the effectiveness of our approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3074524</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1481-0162</orcidid><orcidid>https://orcid.org/0000-0002-7185-2804</orcidid><orcidid>https://orcid.org/0000-0001-5699-6167</orcidid><orcidid>https://orcid.org/0000-0001-8375-3590</orcidid><orcidid>https://orcid.org/0000-0003-0176-3088</orcidid><orcidid>https://orcid.org/0000-0001-5948-5055</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2021_3074524 |
source | IEEE Electronic Library (IEL) |
subjects | Attention module Coders convolutional neural network (CNN) Decoders Decoding Distribution Feature extraction Feature maps Image processing Image segmentation Kernel Modules Remote sensing road extraction Roads Roads & highways Shape Task analysis |
title | DBRANet: Road Extraction by Dual-Branch Encoder and Regional Attention Decoder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DBRANet:%20Road%20Extraction%20by%20Dual-Branch%20Encoder%20and%20Regional%20Attention%20Decoder&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Chen,%20Si-Bao&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3074524&rft_dat=%3Cproquest_RIE%3E2610183194%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610183194&rft_id=info:pmid/&rft_ieee_id=9420153&rfr_iscdi=true |