Fuzzy Embedded Clustering Based on Bipartite Graph for Large-Scale Hyperspectral Image

Hyperspectral image (HSI) clustering has been widely used in the field of remote sensing. However, most traditional clustering algorithms are not suitable for dealing with large-scale HSI due to their low clustering performance and high computational complexity. In this letter, we propose a novel fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Hauptverfasser: Yang, Xiaojun, Xu, Yuxiong, Li, Siyuan, Liu, Yujia, Liu, Yijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 19
creator Yang, Xiaojun
Xu, Yuxiong
Li, Siyuan
Liu, Yujia
Liu, Yijun
description Hyperspectral image (HSI) clustering has been widely used in the field of remote sensing. However, most traditional clustering algorithms are not suitable for dealing with large-scale HSI due to their low clustering performance and high computational complexity. In this letter, we propose a novel fuzzy clustering algorithm, called fuzzy embedded clustering based on the bipartite graph (FECBG), to efficiently deal with large-scale HSI clustering problems. First, we propose the FECBG method that incorporates fuzzy clustering with the nonnegative regularization term based on the bipartite graph into a unified model, which has good clustering performance and reduces the sensitivity of fuzzy clustering to the initial cluster centers. Second, we adopt the fast spectral embedded method to obtain the low-dimensional representation of HSI data, to reduce the computational complexity. At last, we add the nonnegative regularization term based on the bipartite graph to fuzzy clustering, to constrain the solution space of the fuzzy membership matrix. Experimental results on several HSI data sets have demonstrated the efficiency and effectiveness of the proposed FECBG algorithm.
doi_str_mv 10.1109/LGRS.2021.3073035
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2021_3073035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9416151</ieee_id><sourcerecordid>2615513274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e0be61b0755bbb0c0999b917faf5a520e0961039b4203e753bc24e9b80b54e8c3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwJ-Nx5kzRL8-jG_kFBcCq-haS7nR3dWpP2Yfv0tmz4dC-Xc87l_Ah5ZDBiDPRLunhfjzhwNhKgBAh5RQZMyiQCqdh1v8cykjr5viV3IewAeJwkakC-5u3pdKSzvcPNBjd0WrahQV8ctnRiQ3eoDnRS1NY3RYN04W39Q_PK09T6LUbrzJZIl8cafagxa7wt6Wpvt3hPbnJbBny4zCH5nM8-pssofVuspq9plHEtmgjB4Zg5UFI65yADrbXTTOU2l1ZyQNBjBkK7mINAJYXLeIzaJeBkjEkmhuT5nFv76rfF0Jhd1fpD99LwcdefCa7iTsXOqsxXIXjMTe2LvfVHw8D0-EyPz_T4zAVf53k6ewpE_NfrmHWxTPwBk2pq7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615513274</pqid></control><display><type>article</type><title>Fuzzy Embedded Clustering Based on Bipartite Graph for Large-Scale Hyperspectral Image</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Xiaojun ; Xu, Yuxiong ; Li, Siyuan ; Liu, Yujia ; Liu, Yijun</creator><creatorcontrib>Yang, Xiaojun ; Xu, Yuxiong ; Li, Siyuan ; Liu, Yujia ; Liu, Yijun</creatorcontrib><description>Hyperspectral image (HSI) clustering has been widely used in the field of remote sensing. However, most traditional clustering algorithms are not suitable for dealing with large-scale HSI due to their low clustering performance and high computational complexity. In this letter, we propose a novel fuzzy clustering algorithm, called fuzzy embedded clustering based on the bipartite graph (FECBG), to efficiently deal with large-scale HSI clustering problems. First, we propose the FECBG method that incorporates fuzzy clustering with the nonnegative regularization term based on the bipartite graph into a unified model, which has good clustering performance and reduces the sensitivity of fuzzy clustering to the initial cluster centers. Second, we adopt the fast spectral embedded method to obtain the low-dimensional representation of HSI data, to reduce the computational complexity. At last, we add the nonnegative regularization term based on the bipartite graph to fuzzy clustering, to constrain the solution space of the fuzzy membership matrix. Experimental results on several HSI data sets have demonstrated the efficiency and effectiveness of the proposed FECBG algorithm.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3073035</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Bipartite graph ; Clustering ; Clustering algorithms ; Complexity ; Computational complexity ; Computer applications ; fuzzy clustering ; Graph theory ; Graphs ; hyperspectral image (HSI) ; Hyperspectral imaging ; Matrix decomposition ; nonnegative regularization term ; Regularization ; Remote sensing ; Research and development ; Sensitivity ; Solution space ; spectral embedded</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e0be61b0755bbb0c0999b917faf5a520e0961039b4203e753bc24e9b80b54e8c3</citedby><cites>FETCH-LOGICAL-c293t-e0be61b0755bbb0c0999b917faf5a520e0961039b4203e753bc24e9b80b54e8c3</cites><orcidid>0000-0002-8955-9657 ; 0000-0002-0514-3698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9416151$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9416151$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Xiaojun</creatorcontrib><creatorcontrib>Xu, Yuxiong</creatorcontrib><creatorcontrib>Li, Siyuan</creatorcontrib><creatorcontrib>Liu, Yujia</creatorcontrib><creatorcontrib>Liu, Yijun</creatorcontrib><title>Fuzzy Embedded Clustering Based on Bipartite Graph for Large-Scale Hyperspectral Image</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Hyperspectral image (HSI) clustering has been widely used in the field of remote sensing. However, most traditional clustering algorithms are not suitable for dealing with large-scale HSI due to their low clustering performance and high computational complexity. In this letter, we propose a novel fuzzy clustering algorithm, called fuzzy embedded clustering based on the bipartite graph (FECBG), to efficiently deal with large-scale HSI clustering problems. First, we propose the FECBG method that incorporates fuzzy clustering with the nonnegative regularization term based on the bipartite graph into a unified model, which has good clustering performance and reduces the sensitivity of fuzzy clustering to the initial cluster centers. Second, we adopt the fast spectral embedded method to obtain the low-dimensional representation of HSI data, to reduce the computational complexity. At last, we add the nonnegative regularization term based on the bipartite graph to fuzzy clustering, to constrain the solution space of the fuzzy membership matrix. Experimental results on several HSI data sets have demonstrated the efficiency and effectiveness of the proposed FECBG algorithm.</description><subject>Algorithms</subject><subject>Bipartite graph</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Complexity</subject><subject>Computational complexity</subject><subject>Computer applications</subject><subject>fuzzy clustering</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>hyperspectral image (HSI)</subject><subject>Hyperspectral imaging</subject><subject>Matrix decomposition</subject><subject>nonnegative regularization term</subject><subject>Regularization</subject><subject>Remote sensing</subject><subject>Research and development</subject><subject>Sensitivity</subject><subject>Solution space</subject><subject>spectral embedded</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKcfQHwJ-Nx5kzRL8-jG_kFBcCq-haS7nR3dWpP2Yfv0tmz4dC-Xc87l_Ah5ZDBiDPRLunhfjzhwNhKgBAh5RQZMyiQCqdh1v8cykjr5viV3IewAeJwkakC-5u3pdKSzvcPNBjd0WrahQV8ctnRiQ3eoDnRS1NY3RYN04W39Q_PK09T6LUbrzJZIl8cafagxa7wt6Wpvt3hPbnJbBny4zCH5nM8-pssofVuspq9plHEtmgjB4Zg5UFI65yADrbXTTOU2l1ZyQNBjBkK7mINAJYXLeIzaJeBkjEkmhuT5nFv76rfF0Jhd1fpD99LwcdefCa7iTsXOqsxXIXjMTe2LvfVHw8D0-EyPz_T4zAVf53k6ewpE_NfrmHWxTPwBk2pq7Q</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yang, Xiaojun</creator><creator>Xu, Yuxiong</creator><creator>Li, Siyuan</creator><creator>Liu, Yujia</creator><creator>Liu, Yijun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8955-9657</orcidid><orcidid>https://orcid.org/0000-0002-0514-3698</orcidid></search><sort><creationdate>2022</creationdate><title>Fuzzy Embedded Clustering Based on Bipartite Graph for Large-Scale Hyperspectral Image</title><author>Yang, Xiaojun ; Xu, Yuxiong ; Li, Siyuan ; Liu, Yujia ; Liu, Yijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e0be61b0755bbb0c0999b917faf5a520e0961039b4203e753bc24e9b80b54e8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bipartite graph</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Complexity</topic><topic>Computational complexity</topic><topic>Computer applications</topic><topic>fuzzy clustering</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>hyperspectral image (HSI)</topic><topic>Hyperspectral imaging</topic><topic>Matrix decomposition</topic><topic>nonnegative regularization term</topic><topic>Regularization</topic><topic>Remote sensing</topic><topic>Research and development</topic><topic>Sensitivity</topic><topic>Solution space</topic><topic>spectral embedded</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xiaojun</creatorcontrib><creatorcontrib>Xu, Yuxiong</creatorcontrib><creatorcontrib>Li, Siyuan</creatorcontrib><creatorcontrib>Liu, Yujia</creatorcontrib><creatorcontrib>Liu, Yijun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Xiaojun</au><au>Xu, Yuxiong</au><au>Li, Siyuan</au><au>Liu, Yujia</au><au>Liu, Yijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Embedded Clustering Based on Bipartite Graph for Large-Scale Hyperspectral Image</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Hyperspectral image (HSI) clustering has been widely used in the field of remote sensing. However, most traditional clustering algorithms are not suitable for dealing with large-scale HSI due to their low clustering performance and high computational complexity. In this letter, we propose a novel fuzzy clustering algorithm, called fuzzy embedded clustering based on the bipartite graph (FECBG), to efficiently deal with large-scale HSI clustering problems. First, we propose the FECBG method that incorporates fuzzy clustering with the nonnegative regularization term based on the bipartite graph into a unified model, which has good clustering performance and reduces the sensitivity of fuzzy clustering to the initial cluster centers. Second, we adopt the fast spectral embedded method to obtain the low-dimensional representation of HSI data, to reduce the computational complexity. At last, we add the nonnegative regularization term based on the bipartite graph to fuzzy clustering, to constrain the solution space of the fuzzy membership matrix. Experimental results on several HSI data sets have demonstrated the efficiency and effectiveness of the proposed FECBG algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3073035</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8955-9657</orcidid><orcidid>https://orcid.org/0000-0002-0514-3698</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2021_3073035
source IEEE Electronic Library (IEL)
subjects Algorithms
Bipartite graph
Clustering
Clustering algorithms
Complexity
Computational complexity
Computer applications
fuzzy clustering
Graph theory
Graphs
hyperspectral image (HSI)
Hyperspectral imaging
Matrix decomposition
nonnegative regularization term
Regularization
Remote sensing
Research and development
Sensitivity
Solution space
spectral embedded
title Fuzzy Embedded Clustering Based on Bipartite Graph for Large-Scale Hyperspectral Image
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Embedded%20Clustering%20Based%20on%20Bipartite%20Graph%20for%20Large-Scale%20Hyperspectral%20Image&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Yang,%20Xiaojun&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3073035&rft_dat=%3Cproquest_RIE%3E2615513274%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615513274&rft_id=info:pmid/&rft_ieee_id=9416151&rfr_iscdi=true