Point Transformer for Shape Classification and Retrieval of Urban Roof Point Clouds
The success of deep learning methods led to significant breakthroughs in 3-D point cloud processing tasks with applications in remote sensing. Existing methods utilize convolutions that have some limitations, as they assume a uniform input distribution and cannot learn long-range dependences. Recent...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 19 |
creator | Shajahan, Dimple A. Varma T., Mukund Muthuganapathy, Ramanathan |
description | The success of deep learning methods led to significant breakthroughs in 3-D point cloud processing tasks with applications in remote sensing. Existing methods utilize convolutions that have some limitations, as they assume a uniform input distribution and cannot learn long-range dependences. Recent works have shown that adding attention in conjunction with these methods improves performance. This raises a question: can attention layers completely replace convolutions? This letter proposes a fully attentional model-Point Transformer (PT) for deriving a rich point cloud representation. The model's shape classification and retrieval performance are evaluated on a large-scale urban data set-RoofN3D and a standard benchmark data set ModelNet40. Extensive experiments are conducted to test the model's robustness to unseen point corruptions for analyzing its effectiveness on real data sets. The proposed method outperforms other state-of-the-art models in the RoofN3D data set, gives competitive results in the ModelNet40 benchmark, and shows high robustness to various unseen point corruptions. Furthermore, the model is highly memory and space-efficient when compared to other methods. |
doi_str_mv | 10.1109/LGRS.2021.3061422 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2021_3061422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9376774</ieee_id><sourcerecordid>2615165364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-702816560fda198a6a8cbfe3f545022276bf4f7320aaa2851c5acb388d07fb4d3</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOI7-AHETcN0xj-bRpRQdhQFlHuAu3LYJdug0Y9IR_PemVFydszjn3MuH0C0lC0pJ8bBarjcLRhhdcCJpztgZmlEhdEaEouejz0UmCv1xia5i3BPCcq3VDG3efdsPeBugj86Hgw04Cd58wtHisoMYW9fWMLS-x9A3eG2H0Npv6LB3eBcq6PHaJzvNlJ0_NfEaXTjoor350znaPT9ty5ds9bZ8LR9XWc0KPmSKME2lkMQ1QAsNEnRdOctdepUwxpSsXO4UZwQAmBa0FlBXXOuGKFflDZ-j-2n3GPzXycbB7P0p9OmkYZKKtM1lnlJ0StXBxxisM8fQHiD8GErMyM6M7MzIzvyxS527qdNaa__zBVdSqZz_Ammrak4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615165364</pqid></control><display><type>article</type><title>Point Transformer for Shape Classification and Retrieval of Urban Roof Point Clouds</title><source>IEEE Electronic Library (IEL)</source><creator>Shajahan, Dimple A. ; Varma T., Mukund ; Muthuganapathy, Ramanathan</creator><creatorcontrib>Shajahan, Dimple A. ; Varma T., Mukund ; Muthuganapathy, Ramanathan</creatorcontrib><description>The success of deep learning methods led to significant breakthroughs in 3-D point cloud processing tasks with applications in remote sensing. Existing methods utilize convolutions that have some limitations, as they assume a uniform input distribution and cannot learn long-range dependences. Recent works have shown that adding attention in conjunction with these methods improves performance. This raises a question: can attention layers completely replace convolutions? This letter proposes a fully attentional model-Point Transformer (PT) for deriving a rich point cloud representation. The model's shape classification and retrieval performance are evaluated on a large-scale urban data set-RoofN3D and a standard benchmark data set ModelNet40. Extensive experiments are conducted to test the model's robustness to unseen point corruptions for analyzing its effectiveness on real data sets. The proposed method outperforms other state-of-the-art models in the RoofN3D data set, gives competitive results in the ModelNet40 benchmark, and shows high robustness to various unseen point corruptions. Furthermore, the model is highly memory and space-efficient when compared to other methods.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3061422</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Benchmark testing ; Benchmarks ; Classification ; Data models ; Datasets ; Deep learning ; Feature extraction ; Machine learning ; Mean average precision (MAP) ; Methods ; Performance enhancement ; Performance evaluation ; Point Transformer (PT) ; Remote sensing ; Retrieval ; Robustness ; Routing ; self-attention ; Shape ; shape classification ; shape retrieval ; Three dimensional models ; Three-dimensional displays ; Transformers</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-702816560fda198a6a8cbfe3f545022276bf4f7320aaa2851c5acb388d07fb4d3</citedby><cites>FETCH-LOGICAL-c293t-702816560fda198a6a8cbfe3f545022276bf4f7320aaa2851c5acb388d07fb4d3</cites><orcidid>0000-0003-0182-977X ; 0000-0003-1072-9957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9376774$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27925,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9376774$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shajahan, Dimple A.</creatorcontrib><creatorcontrib>Varma T., Mukund</creatorcontrib><creatorcontrib>Muthuganapathy, Ramanathan</creatorcontrib><title>Point Transformer for Shape Classification and Retrieval of Urban Roof Point Clouds</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>The success of deep learning methods led to significant breakthroughs in 3-D point cloud processing tasks with applications in remote sensing. Existing methods utilize convolutions that have some limitations, as they assume a uniform input distribution and cannot learn long-range dependences. Recent works have shown that adding attention in conjunction with these methods improves performance. This raises a question: can attention layers completely replace convolutions? This letter proposes a fully attentional model-Point Transformer (PT) for deriving a rich point cloud representation. The model's shape classification and retrieval performance are evaluated on a large-scale urban data set-RoofN3D and a standard benchmark data set ModelNet40. Extensive experiments are conducted to test the model's robustness to unseen point corruptions for analyzing its effectiveness on real data sets. The proposed method outperforms other state-of-the-art models in the RoofN3D data set, gives competitive results in the ModelNet40 benchmark, and shows high robustness to various unseen point corruptions. Furthermore, the model is highly memory and space-efficient when compared to other methods.</description><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>Classification</subject><subject>Data models</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Mean average precision (MAP)</subject><subject>Methods</subject><subject>Performance enhancement</subject><subject>Performance evaluation</subject><subject>Point Transformer (PT)</subject><subject>Remote sensing</subject><subject>Retrieval</subject><subject>Robustness</subject><subject>Routing</subject><subject>self-attention</subject><subject>Shape</subject><subject>shape classification</subject><subject>shape retrieval</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Transformers</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLxDAUhYMoOI7-AHETcN0xj-bRpRQdhQFlHuAu3LYJdug0Y9IR_PemVFydszjn3MuH0C0lC0pJ8bBarjcLRhhdcCJpztgZmlEhdEaEouejz0UmCv1xia5i3BPCcq3VDG3efdsPeBugj86Hgw04Cd58wtHisoMYW9fWMLS-x9A3eG2H0Npv6LB3eBcq6PHaJzvNlJ0_NfEaXTjoor350znaPT9ty5ds9bZ8LR9XWc0KPmSKME2lkMQ1QAsNEnRdOctdepUwxpSsXO4UZwQAmBa0FlBXXOuGKFflDZ-j-2n3GPzXycbB7P0p9OmkYZKKtM1lnlJ0StXBxxisM8fQHiD8GErMyM6M7MzIzvyxS527qdNaa__zBVdSqZz_Ammrak4</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Shajahan, Dimple A.</creator><creator>Varma T., Mukund</creator><creator>Muthuganapathy, Ramanathan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0182-977X</orcidid><orcidid>https://orcid.org/0000-0003-1072-9957</orcidid></search><sort><creationdate>2022</creationdate><title>Point Transformer for Shape Classification and Retrieval of Urban Roof Point Clouds</title><author>Shajahan, Dimple A. ; Varma T., Mukund ; Muthuganapathy, Ramanathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-702816560fda198a6a8cbfe3f545022276bf4f7320aaa2851c5acb388d07fb4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>Classification</topic><topic>Data models</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Mean average precision (MAP)</topic><topic>Methods</topic><topic>Performance enhancement</topic><topic>Performance evaluation</topic><topic>Point Transformer (PT)</topic><topic>Remote sensing</topic><topic>Retrieval</topic><topic>Robustness</topic><topic>Routing</topic><topic>self-attention</topic><topic>Shape</topic><topic>shape classification</topic><topic>shape retrieval</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shajahan, Dimple A.</creatorcontrib><creatorcontrib>Varma T., Mukund</creatorcontrib><creatorcontrib>Muthuganapathy, Ramanathan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shajahan, Dimple A.</au><au>Varma T., Mukund</au><au>Muthuganapathy, Ramanathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Point Transformer for Shape Classification and Retrieval of Urban Roof Point Clouds</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>The success of deep learning methods led to significant breakthroughs in 3-D point cloud processing tasks with applications in remote sensing. Existing methods utilize convolutions that have some limitations, as they assume a uniform input distribution and cannot learn long-range dependences. Recent works have shown that adding attention in conjunction with these methods improves performance. This raises a question: can attention layers completely replace convolutions? This letter proposes a fully attentional model-Point Transformer (PT) for deriving a rich point cloud representation. The model's shape classification and retrieval performance are evaluated on a large-scale urban data set-RoofN3D and a standard benchmark data set ModelNet40. Extensive experiments are conducted to test the model's robustness to unseen point corruptions for analyzing its effectiveness on real data sets. The proposed method outperforms other state-of-the-art models in the RoofN3D data set, gives competitive results in the ModelNet40 benchmark, and shows high robustness to various unseen point corruptions. Furthermore, the model is highly memory and space-efficient when compared to other methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3061422</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0182-977X</orcidid><orcidid>https://orcid.org/0000-0003-1072-9957</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2021_3061422 |
source | IEEE Electronic Library (IEL) |
subjects | Benchmark testing Benchmarks Classification Data models Datasets Deep learning Feature extraction Machine learning Mean average precision (MAP) Methods Performance enhancement Performance evaluation Point Transformer (PT) Remote sensing Retrieval Robustness Routing self-attention Shape shape classification shape retrieval Three dimensional models Three-dimensional displays Transformers |
title | Point Transformer for Shape Classification and Retrieval of Urban Roof Point Clouds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A24%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Point%20Transformer%20for%20Shape%20Classification%20and%20Retrieval%20of%20Urban%20Roof%20Point%20Clouds&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Shajahan,%20Dimple%20A.&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3061422&rft_dat=%3Cproquest_RIE%3E2615165364%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615165364&rft_id=info:pmid/&rft_ieee_id=9376774&rfr_iscdi=true |