Region-Based Multiview Sparse Hyperspectral Unmixing Incorporating Spectral Library
Hyperspectral image (HSI) is characterized by its huge contiguous set of wavelengths. It is possible and needed to benefit from the "hyper" spectral information as well as the spatial information. For this purpose, we propose a new multiview data generation approach that takes full advanta...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2019-07, Vol.16 (7), p.1140-1144 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1144 |
---|---|
container_issue | 7 |
container_start_page | 1140 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 16 |
creator | Qi, Lin Li, Jie Wang, Ying Gao, Xinbo |
description | Hyperspectral image (HSI) is characterized by its huge contiguous set of wavelengths. It is possible and needed to benefit from the "hyper" spectral information as well as the spatial information. For this purpose, we propose a new multiview data generation approach that takes full advantage of the rich spectral and spatial information in HSI, by dividing the original HSI into several spatially homogeneous regions with different band margins. Then, a new sparse unmixing algorithm, called region-based multiview sparse unmixing (RMSU), is presented to tackle such a multiview data model in this letter. The RMSU algorithm combines the multiview learning and a priori information to improve the performance of sparse unmixing by incorporating the multiview information and spectral library into the dictionary learning framework. We also show that RMSU can serve as a dictionary pruning algorithm, which provides a possibility that unmixing algorithms could have higher accuracy and efficiency. Experimental results on both simulated and real hyperspectral data demonstrate the effectiveness of the proposed RMSU algorithm both visually and quantitatively. |
doi_str_mv | 10.1109/LGRS.2019.2891559 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2019_2891559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8624350</ieee_id><sourcerecordid>2247901589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-64b723c9f2148eb588f919db0ea7f36364215b40a1fd6a303b595918e4554b373</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRsFY_gHgJeE7cv8nuUYu2hYjQWPC27KaTsqVN4m6q9tub0OrpzTDvzQw_hG4JTgjB6iGfLoqEYqISKhURQp2hUS8yxiIj50PNRSyU_LhEVyFsMKZcymyEigWsXVPHTybAKnrdbzv35eA7KlrjA0SzQws-tFB23myjZb1zP65eR_O6bHzbeNMNXfE3z531xh-u0UVltgFuTjpGy5fn98kszt-m88ljHpdUsS5Ouc0oK1VFCZdghZSVImplMZisYilLOSXCcmxItUoNw8wKJRSRwIXglmVsjO6Pe1vffO4hdHrT7H3dn9SU8kxhIqTqXeToKn0TgodKt97t-jc1wXpgpwd2emCnT-z6zN0x4wDg3y9TypnA7Bcxi2q4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2247901589</pqid></control><display><type>article</type><title>Region-Based Multiview Sparse Hyperspectral Unmixing Incorporating Spectral Library</title><source>IEEE Electronic Library (IEL)</source><creator>Qi, Lin ; Li, Jie ; Wang, Ying ; Gao, Xinbo</creator><creatorcontrib>Qi, Lin ; Li, Jie ; Wang, Ying ; Gao, Xinbo</creatorcontrib><description>Hyperspectral image (HSI) is characterized by its huge contiguous set of wavelengths. It is possible and needed to benefit from the "hyper" spectral information as well as the spatial information. For this purpose, we propose a new multiview data generation approach that takes full advantage of the rich spectral and spatial information in HSI, by dividing the original HSI into several spatially homogeneous regions with different band margins. Then, a new sparse unmixing algorithm, called region-based multiview sparse unmixing (RMSU), is presented to tackle such a multiview data model in this letter. The RMSU algorithm combines the multiview learning and a priori information to improve the performance of sparse unmixing by incorporating the multiview information and spectral library into the dictionary learning framework. We also show that RMSU can serve as a dictionary pruning algorithm, which provides a possibility that unmixing algorithms could have higher accuracy and efficiency. Experimental results on both simulated and real hyperspectral data demonstrate the effectiveness of the proposed RMSU algorithm both visually and quantitatively.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2019.2891559</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Clustering algorithms ; Computer simulation ; Dictionaries ; Dictionary pruning ; Hyperspectral imaging ; hyperspectral imaging (HSI) ; Indexes ; Libraries ; Machine learning ; multiview learning ; Performance enhancement ; Pruning ; sparse unmixing ; Spatial data ; Spectra ; spectral library ; Wavelengths</subject><ispartof>IEEE geoscience and remote sensing letters, 2019-07, Vol.16 (7), p.1140-1144</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-64b723c9f2148eb588f919db0ea7f36364215b40a1fd6a303b595918e4554b373</citedby><cites>FETCH-LOGICAL-c293t-64b723c9f2148eb588f919db0ea7f36364215b40a1fd6a303b595918e4554b373</cites><orcidid>0000-0003-1443-0776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8624350$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8624350$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qi, Lin</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Gao, Xinbo</creatorcontrib><title>Region-Based Multiview Sparse Hyperspectral Unmixing Incorporating Spectral Library</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Hyperspectral image (HSI) is characterized by its huge contiguous set of wavelengths. It is possible and needed to benefit from the "hyper" spectral information as well as the spatial information. For this purpose, we propose a new multiview data generation approach that takes full advantage of the rich spectral and spatial information in HSI, by dividing the original HSI into several spatially homogeneous regions with different band margins. Then, a new sparse unmixing algorithm, called region-based multiview sparse unmixing (RMSU), is presented to tackle such a multiview data model in this letter. The RMSU algorithm combines the multiview learning and a priori information to improve the performance of sparse unmixing by incorporating the multiview information and spectral library into the dictionary learning framework. We also show that RMSU can serve as a dictionary pruning algorithm, which provides a possibility that unmixing algorithms could have higher accuracy and efficiency. Experimental results on both simulated and real hyperspectral data demonstrate the effectiveness of the proposed RMSU algorithm both visually and quantitatively.</description><subject>Algorithms</subject><subject>Clustering algorithms</subject><subject>Computer simulation</subject><subject>Dictionaries</subject><subject>Dictionary pruning</subject><subject>Hyperspectral imaging</subject><subject>hyperspectral imaging (HSI)</subject><subject>Indexes</subject><subject>Libraries</subject><subject>Machine learning</subject><subject>multiview learning</subject><subject>Performance enhancement</subject><subject>Pruning</subject><subject>sparse unmixing</subject><subject>Spatial data</subject><subject>Spectra</subject><subject>spectral library</subject><subject>Wavelengths</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9Lw0AQxRdRsFY_gHgJeE7cv8nuUYu2hYjQWPC27KaTsqVN4m6q9tub0OrpzTDvzQw_hG4JTgjB6iGfLoqEYqISKhURQp2hUS8yxiIj50PNRSyU_LhEVyFsMKZcymyEigWsXVPHTybAKnrdbzv35eA7KlrjA0SzQws-tFB23myjZb1zP65eR_O6bHzbeNMNXfE3z531xh-u0UVltgFuTjpGy5fn98kszt-m88ljHpdUsS5Ouc0oK1VFCZdghZSVImplMZisYilLOSXCcmxItUoNw8wKJRSRwIXglmVsjO6Pe1vffO4hdHrT7H3dn9SU8kxhIqTqXeToKn0TgodKt97t-jc1wXpgpwd2emCnT-z6zN0x4wDg3y9TypnA7Bcxi2q4</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Qi, Lin</creator><creator>Li, Jie</creator><creator>Wang, Ying</creator><creator>Gao, Xinbo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1443-0776</orcidid></search><sort><creationdate>20190701</creationdate><title>Region-Based Multiview Sparse Hyperspectral Unmixing Incorporating Spectral Library</title><author>Qi, Lin ; Li, Jie ; Wang, Ying ; Gao, Xinbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-64b723c9f2148eb588f919db0ea7f36364215b40a1fd6a303b595918e4554b373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Clustering algorithms</topic><topic>Computer simulation</topic><topic>Dictionaries</topic><topic>Dictionary pruning</topic><topic>Hyperspectral imaging</topic><topic>hyperspectral imaging (HSI)</topic><topic>Indexes</topic><topic>Libraries</topic><topic>Machine learning</topic><topic>multiview learning</topic><topic>Performance enhancement</topic><topic>Pruning</topic><topic>sparse unmixing</topic><topic>Spatial data</topic><topic>Spectra</topic><topic>spectral library</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Lin</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Gao, Xinbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qi, Lin</au><au>Li, Jie</au><au>Wang, Ying</au><au>Gao, Xinbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Region-Based Multiview Sparse Hyperspectral Unmixing Incorporating Spectral Library</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>16</volume><issue>7</issue><spage>1140</spage><epage>1144</epage><pages>1140-1144</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Hyperspectral image (HSI) is characterized by its huge contiguous set of wavelengths. It is possible and needed to benefit from the "hyper" spectral information as well as the spatial information. For this purpose, we propose a new multiview data generation approach that takes full advantage of the rich spectral and spatial information in HSI, by dividing the original HSI into several spatially homogeneous regions with different band margins. Then, a new sparse unmixing algorithm, called region-based multiview sparse unmixing (RMSU), is presented to tackle such a multiview data model in this letter. The RMSU algorithm combines the multiview learning and a priori information to improve the performance of sparse unmixing by incorporating the multiview information and spectral library into the dictionary learning framework. We also show that RMSU can serve as a dictionary pruning algorithm, which provides a possibility that unmixing algorithms could have higher accuracy and efficiency. Experimental results on both simulated and real hyperspectral data demonstrate the effectiveness of the proposed RMSU algorithm both visually and quantitatively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2019.2891559</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1443-0776</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2019-07, Vol.16 (7), p.1140-1144 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2019_2891559 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Clustering algorithms Computer simulation Dictionaries Dictionary pruning Hyperspectral imaging hyperspectral imaging (HSI) Indexes Libraries Machine learning multiview learning Performance enhancement Pruning sparse unmixing Spatial data Spectra spectral library Wavelengths |
title | Region-Based Multiview Sparse Hyperspectral Unmixing Incorporating Spectral Library |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T02%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Region-Based%20Multiview%20Sparse%20Hyperspectral%20Unmixing%20Incorporating%20Spectral%20Library&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Qi,%20Lin&rft.date=2019-07-01&rft.volume=16&rft.issue=7&rft.spage=1140&rft.epage=1144&rft.pages=1140-1144&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2019.2891559&rft_dat=%3Cproquest_RIE%3E2247901589%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2247901589&rft_id=info:pmid/&rft_ieee_id=8624350&rfr_iscdi=true |