Region-Based Multiview Sparse Hyperspectral Unmixing Incorporating Spectral Library

Hyperspectral image (HSI) is characterized by its huge contiguous set of wavelengths. It is possible and needed to benefit from the "hyper" spectral information as well as the spatial information. For this purpose, we propose a new multiview data generation approach that takes full advanta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2019-07, Vol.16 (7), p.1140-1144
Hauptverfasser: Qi, Lin, Li, Jie, Wang, Ying, Gao, Xinbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1144
container_issue 7
container_start_page 1140
container_title IEEE geoscience and remote sensing letters
container_volume 16
creator Qi, Lin
Li, Jie
Wang, Ying
Gao, Xinbo
description Hyperspectral image (HSI) is characterized by its huge contiguous set of wavelengths. It is possible and needed to benefit from the "hyper" spectral information as well as the spatial information. For this purpose, we propose a new multiview data generation approach that takes full advantage of the rich spectral and spatial information in HSI, by dividing the original HSI into several spatially homogeneous regions with different band margins. Then, a new sparse unmixing algorithm, called region-based multiview sparse unmixing (RMSU), is presented to tackle such a multiview data model in this letter. The RMSU algorithm combines the multiview learning and a priori information to improve the performance of sparse unmixing by incorporating the multiview information and spectral library into the dictionary learning framework. We also show that RMSU can serve as a dictionary pruning algorithm, which provides a possibility that unmixing algorithms could have higher accuracy and efficiency. Experimental results on both simulated and real hyperspectral data demonstrate the effectiveness of the proposed RMSU algorithm both visually and quantitatively.
doi_str_mv 10.1109/LGRS.2019.2891559
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2019_2891559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8624350</ieee_id><sourcerecordid>2247901589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-64b723c9f2148eb588f919db0ea7f36364215b40a1fd6a303b595918e4554b373</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRsFY_gHgJeE7cv8nuUYu2hYjQWPC27KaTsqVN4m6q9tub0OrpzTDvzQw_hG4JTgjB6iGfLoqEYqISKhURQp2hUS8yxiIj50PNRSyU_LhEVyFsMKZcymyEigWsXVPHTybAKnrdbzv35eA7KlrjA0SzQws-tFB23myjZb1zP65eR_O6bHzbeNMNXfE3z531xh-u0UVltgFuTjpGy5fn98kszt-m88ljHpdUsS5Ouc0oK1VFCZdghZSVImplMZisYilLOSXCcmxItUoNw8wKJRSRwIXglmVsjO6Pe1vffO4hdHrT7H3dn9SU8kxhIqTqXeToKn0TgodKt97t-jc1wXpgpwd2emCnT-z6zN0x4wDg3y9TypnA7Bcxi2q4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2247901589</pqid></control><display><type>article</type><title>Region-Based Multiview Sparse Hyperspectral Unmixing Incorporating Spectral Library</title><source>IEEE Electronic Library (IEL)</source><creator>Qi, Lin ; Li, Jie ; Wang, Ying ; Gao, Xinbo</creator><creatorcontrib>Qi, Lin ; Li, Jie ; Wang, Ying ; Gao, Xinbo</creatorcontrib><description>Hyperspectral image (HSI) is characterized by its huge contiguous set of wavelengths. It is possible and needed to benefit from the "hyper" spectral information as well as the spatial information. For this purpose, we propose a new multiview data generation approach that takes full advantage of the rich spectral and spatial information in HSI, by dividing the original HSI into several spatially homogeneous regions with different band margins. Then, a new sparse unmixing algorithm, called region-based multiview sparse unmixing (RMSU), is presented to tackle such a multiview data model in this letter. The RMSU algorithm combines the multiview learning and a priori information to improve the performance of sparse unmixing by incorporating the multiview information and spectral library into the dictionary learning framework. We also show that RMSU can serve as a dictionary pruning algorithm, which provides a possibility that unmixing algorithms could have higher accuracy and efficiency. Experimental results on both simulated and real hyperspectral data demonstrate the effectiveness of the proposed RMSU algorithm both visually and quantitatively.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2019.2891559</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Clustering algorithms ; Computer simulation ; Dictionaries ; Dictionary pruning ; Hyperspectral imaging ; hyperspectral imaging (HSI) ; Indexes ; Libraries ; Machine learning ; multiview learning ; Performance enhancement ; Pruning ; sparse unmixing ; Spatial data ; Spectra ; spectral library ; Wavelengths</subject><ispartof>IEEE geoscience and remote sensing letters, 2019-07, Vol.16 (7), p.1140-1144</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-64b723c9f2148eb588f919db0ea7f36364215b40a1fd6a303b595918e4554b373</citedby><cites>FETCH-LOGICAL-c293t-64b723c9f2148eb588f919db0ea7f36364215b40a1fd6a303b595918e4554b373</cites><orcidid>0000-0003-1443-0776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8624350$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8624350$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qi, Lin</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Gao, Xinbo</creatorcontrib><title>Region-Based Multiview Sparse Hyperspectral Unmixing Incorporating Spectral Library</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Hyperspectral image (HSI) is characterized by its huge contiguous set of wavelengths. It is possible and needed to benefit from the "hyper" spectral information as well as the spatial information. For this purpose, we propose a new multiview data generation approach that takes full advantage of the rich spectral and spatial information in HSI, by dividing the original HSI into several spatially homogeneous regions with different band margins. Then, a new sparse unmixing algorithm, called region-based multiview sparse unmixing (RMSU), is presented to tackle such a multiview data model in this letter. The RMSU algorithm combines the multiview learning and a priori information to improve the performance of sparse unmixing by incorporating the multiview information and spectral library into the dictionary learning framework. We also show that RMSU can serve as a dictionary pruning algorithm, which provides a possibility that unmixing algorithms could have higher accuracy and efficiency. Experimental results on both simulated and real hyperspectral data demonstrate the effectiveness of the proposed RMSU algorithm both visually and quantitatively.</description><subject>Algorithms</subject><subject>Clustering algorithms</subject><subject>Computer simulation</subject><subject>Dictionaries</subject><subject>Dictionary pruning</subject><subject>Hyperspectral imaging</subject><subject>hyperspectral imaging (HSI)</subject><subject>Indexes</subject><subject>Libraries</subject><subject>Machine learning</subject><subject>multiview learning</subject><subject>Performance enhancement</subject><subject>Pruning</subject><subject>sparse unmixing</subject><subject>Spatial data</subject><subject>Spectra</subject><subject>spectral library</subject><subject>Wavelengths</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9Lw0AQxRdRsFY_gHgJeE7cv8nuUYu2hYjQWPC27KaTsqVN4m6q9tub0OrpzTDvzQw_hG4JTgjB6iGfLoqEYqISKhURQp2hUS8yxiIj50PNRSyU_LhEVyFsMKZcymyEigWsXVPHTybAKnrdbzv35eA7KlrjA0SzQws-tFB23myjZb1zP65eR_O6bHzbeNMNXfE3z531xh-u0UVltgFuTjpGy5fn98kszt-m88ljHpdUsS5Ouc0oK1VFCZdghZSVImplMZisYilLOSXCcmxItUoNw8wKJRSRwIXglmVsjO6Pe1vffO4hdHrT7H3dn9SU8kxhIqTqXeToKn0TgodKt97t-jc1wXpgpwd2emCnT-z6zN0x4wDg3y9TypnA7Bcxi2q4</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Qi, Lin</creator><creator>Li, Jie</creator><creator>Wang, Ying</creator><creator>Gao, Xinbo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1443-0776</orcidid></search><sort><creationdate>20190701</creationdate><title>Region-Based Multiview Sparse Hyperspectral Unmixing Incorporating Spectral Library</title><author>Qi, Lin ; Li, Jie ; Wang, Ying ; Gao, Xinbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-64b723c9f2148eb588f919db0ea7f36364215b40a1fd6a303b595918e4554b373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Clustering algorithms</topic><topic>Computer simulation</topic><topic>Dictionaries</topic><topic>Dictionary pruning</topic><topic>Hyperspectral imaging</topic><topic>hyperspectral imaging (HSI)</topic><topic>Indexes</topic><topic>Libraries</topic><topic>Machine learning</topic><topic>multiview learning</topic><topic>Performance enhancement</topic><topic>Pruning</topic><topic>sparse unmixing</topic><topic>Spatial data</topic><topic>Spectra</topic><topic>spectral library</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Lin</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Gao, Xinbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qi, Lin</au><au>Li, Jie</au><au>Wang, Ying</au><au>Gao, Xinbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Region-Based Multiview Sparse Hyperspectral Unmixing Incorporating Spectral Library</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>16</volume><issue>7</issue><spage>1140</spage><epage>1144</epage><pages>1140-1144</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Hyperspectral image (HSI) is characterized by its huge contiguous set of wavelengths. It is possible and needed to benefit from the "hyper" spectral information as well as the spatial information. For this purpose, we propose a new multiview data generation approach that takes full advantage of the rich spectral and spatial information in HSI, by dividing the original HSI into several spatially homogeneous regions with different band margins. Then, a new sparse unmixing algorithm, called region-based multiview sparse unmixing (RMSU), is presented to tackle such a multiview data model in this letter. The RMSU algorithm combines the multiview learning and a priori information to improve the performance of sparse unmixing by incorporating the multiview information and spectral library into the dictionary learning framework. We also show that RMSU can serve as a dictionary pruning algorithm, which provides a possibility that unmixing algorithms could have higher accuracy and efficiency. Experimental results on both simulated and real hyperspectral data demonstrate the effectiveness of the proposed RMSU algorithm both visually and quantitatively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2019.2891559</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1443-0776</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2019-07, Vol.16 (7), p.1140-1144
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2019_2891559
source IEEE Electronic Library (IEL)
subjects Algorithms
Clustering algorithms
Computer simulation
Dictionaries
Dictionary pruning
Hyperspectral imaging
hyperspectral imaging (HSI)
Indexes
Libraries
Machine learning
multiview learning
Performance enhancement
Pruning
sparse unmixing
Spatial data
Spectra
spectral library
Wavelengths
title Region-Based Multiview Sparse Hyperspectral Unmixing Incorporating Spectral Library
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T02%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Region-Based%20Multiview%20Sparse%20Hyperspectral%20Unmixing%20Incorporating%20Spectral%20Library&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Qi,%20Lin&rft.date=2019-07-01&rft.volume=16&rft.issue=7&rft.spage=1140&rft.epage=1144&rft.pages=1140-1144&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2019.2891559&rft_dat=%3Cproquest_RIE%3E2247901589%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2247901589&rft_id=info:pmid/&rft_ieee_id=8624350&rfr_iscdi=true