Hyperspectral Image Spectral-Spatial Feature Extraction via Tensor Principal Component Analysis

We consider the tensor-based spectral-spatial feature extraction problem for hyperspectral image classification. First, a tensor framework based on circular convolution is proposed. Based on this framework, we extend the traditional principal component analysis (PCA) to its tensorial version tensor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2017-09, Vol.14 (9), p.1431-1435
Hauptverfasser: Yuemei Ren, Liang Liao, Maybank, Stephen John, Yanning Zhang, Xin Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1435
container_issue 9
container_start_page 1431
container_title IEEE geoscience and remote sensing letters
container_volume 14
creator Yuemei Ren
Liang Liao
Maybank, Stephen John
Yanning Zhang
Xin Liu
description We consider the tensor-based spectral-spatial feature extraction problem for hyperspectral image classification. First, a tensor framework based on circular convolution is proposed. Based on this framework, we extend the traditional principal component analysis (PCA) to its tensorial version tensor PCA (TPCA), which is applied to the spectral-spatial features of hyperspectral image data. The experiments show that the classification accuracy obtained using TPCA features is significantly higher than the accuracies obtained by its rivals.
doi_str_mv 10.1109/LGRS.2017.2686878
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2017_2686878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7993025</ieee_id><sourcerecordid>2174482929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-670e9f6fa8a2623fa6211d10df6f847cc62beca9a81a7114b828e9397c259413</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWKsPIF4WPG_NZLOb5FhKbQsFxfbgLaTprKS0mzXZin17s7R4mpmfb4bhI-QR6AiAqpfl7GM1YhTEiFWykkJekQGUpcxpKeC673mZl0p-3pK7GHeUMi6lGBA9P7UYYou2C2afLQ7mC7PVZcxXrelcil_RdMeA2fQ3xbZzvsl-nMnW2EQfsvfgGuvaxE38ofUNNl02bsz-FF28Jze12Ud8uNQhWb9O15N5vnybLSbjZW45ZV1eCYqqrmojDatYUZuKAWyBblMmubC2Yhu0RhkJRgDwjWQSVaGEZaXiUAzJ8_lsG_z3EWOnd_4Y0g9RMxCcS6aYShScKRt8jAFr3QZ3MOGkgepeo-416l6jvmhMO0_nHYeI_7xQqqCsLP4AE1hvXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174482929</pqid></control><display><type>article</type><title>Hyperspectral Image Spectral-Spatial Feature Extraction via Tensor Principal Component Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Yuemei Ren ; Liang Liao ; Maybank, Stephen John ; Yanning Zhang ; Xin Liu</creator><creatorcontrib>Yuemei Ren ; Liang Liao ; Maybank, Stephen John ; Yanning Zhang ; Xin Liu</creatorcontrib><description>We consider the tensor-based spectral-spatial feature extraction problem for hyperspectral image classification. First, a tensor framework based on circular convolution is proposed. Based on this framework, we extend the traditional principal component analysis (PCA) to its tensorial version tensor PCA (TPCA), which is applied to the spectral-spatial features of hyperspectral image data. The experiments show that the classification accuracy obtained using TPCA features is significantly higher than the accuracies obtained by its rivals.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2017.2686878</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Convolution ; Feature extraction ; Fourier transforms ; Frameworks ; hyperspectral image classification ; Hyperspectral imaging ; Image classification ; Mathematical analysis ; Matrix decomposition ; Principal component analysis ; principal component analysis (PCA) ; Principal components analysis ; Spectra ; Tensile stress ; tensor model ; Tensors</subject><ispartof>IEEE geoscience and remote sensing letters, 2017-09, Vol.14 (9), p.1431-1435</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-670e9f6fa8a2623fa6211d10df6f847cc62beca9a81a7114b828e9397c259413</citedby><cites>FETCH-LOGICAL-c402t-670e9f6fa8a2623fa6211d10df6f847cc62beca9a81a7114b828e9397c259413</cites><orcidid>0000-0002-4613-7200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7993025$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Yuemei Ren</creatorcontrib><creatorcontrib>Liang Liao</creatorcontrib><creatorcontrib>Maybank, Stephen John</creatorcontrib><creatorcontrib>Yanning Zhang</creatorcontrib><creatorcontrib>Xin Liu</creatorcontrib><title>Hyperspectral Image Spectral-Spatial Feature Extraction via Tensor Principal Component Analysis</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>We consider the tensor-based spectral-spatial feature extraction problem for hyperspectral image classification. First, a tensor framework based on circular convolution is proposed. Based on this framework, we extend the traditional principal component analysis (PCA) to its tensorial version tensor PCA (TPCA), which is applied to the spectral-spatial features of hyperspectral image data. The experiments show that the classification accuracy obtained using TPCA features is significantly higher than the accuracies obtained by its rivals.</description><subject>Classification</subject><subject>Convolution</subject><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Frameworks</subject><subject>hyperspectral image classification</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>Principal component analysis</subject><subject>principal component analysis (PCA)</subject><subject>Principal components analysis</subject><subject>Spectra</subject><subject>Tensile stress</subject><subject>tensor model</subject><subject>Tensors</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQhoMoWKsPIF4WPG_NZLOb5FhKbQsFxfbgLaTprKS0mzXZin17s7R4mpmfb4bhI-QR6AiAqpfl7GM1YhTEiFWykkJekQGUpcxpKeC673mZl0p-3pK7GHeUMi6lGBA9P7UYYou2C2afLQ7mC7PVZcxXrelcil_RdMeA2fQ3xbZzvsl-nMnW2EQfsvfgGuvaxE38ofUNNl02bsz-FF28Jze12Ud8uNQhWb9O15N5vnybLSbjZW45ZV1eCYqqrmojDatYUZuKAWyBblMmubC2Yhu0RhkJRgDwjWQSVaGEZaXiUAzJ8_lsG_z3EWOnd_4Y0g9RMxCcS6aYShScKRt8jAFr3QZ3MOGkgepeo-416l6jvmhMO0_nHYeI_7xQqqCsLP4AE1hvXw</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Yuemei Ren</creator><creator>Liang Liao</creator><creator>Maybank, Stephen John</creator><creator>Yanning Zhang</creator><creator>Xin Liu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4613-7200</orcidid></search><sort><creationdate>20170901</creationdate><title>Hyperspectral Image Spectral-Spatial Feature Extraction via Tensor Principal Component Analysis</title><author>Yuemei Ren ; Liang Liao ; Maybank, Stephen John ; Yanning Zhang ; Xin Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-670e9f6fa8a2623fa6211d10df6f847cc62beca9a81a7114b828e9397c259413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Classification</topic><topic>Convolution</topic><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Frameworks</topic><topic>hyperspectral image classification</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>Principal component analysis</topic><topic>principal component analysis (PCA)</topic><topic>Principal components analysis</topic><topic>Spectra</topic><topic>Tensile stress</topic><topic>tensor model</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuemei Ren</creatorcontrib><creatorcontrib>Liang Liao</creatorcontrib><creatorcontrib>Maybank, Stephen John</creatorcontrib><creatorcontrib>Yanning Zhang</creatorcontrib><creatorcontrib>Xin Liu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuemei Ren</au><au>Liang Liao</au><au>Maybank, Stephen John</au><au>Yanning Zhang</au><au>Xin Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral Image Spectral-Spatial Feature Extraction via Tensor Principal Component Analysis</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>14</volume><issue>9</issue><spage>1431</spage><epage>1435</epage><pages>1431-1435</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>We consider the tensor-based spectral-spatial feature extraction problem for hyperspectral image classification. First, a tensor framework based on circular convolution is proposed. Based on this framework, we extend the traditional principal component analysis (PCA) to its tensorial version tensor PCA (TPCA), which is applied to the spectral-spatial features of hyperspectral image data. The experiments show that the classification accuracy obtained using TPCA features is significantly higher than the accuracies obtained by its rivals.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2017.2686878</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4613-7200</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2017-09, Vol.14 (9), p.1431-1435
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2017_2686878
source IEEE Electronic Library (IEL)
subjects Classification
Convolution
Feature extraction
Fourier transforms
Frameworks
hyperspectral image classification
Hyperspectral imaging
Image classification
Mathematical analysis
Matrix decomposition
Principal component analysis
principal component analysis (PCA)
Principal components analysis
Spectra
Tensile stress
tensor model
Tensors
title Hyperspectral Image Spectral-Spatial Feature Extraction via Tensor Principal Component Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20Image%20Spectral-Spatial%20Feature%20Extraction%20via%20Tensor%20Principal%20Component%20Analysis&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Yuemei%20Ren&rft.date=2017-09-01&rft.volume=14&rft.issue=9&rft.spage=1431&rft.epage=1435&rft.pages=1431-1435&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2017.2686878&rft_dat=%3Cproquest_cross%3E2174482929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174482929&rft_id=info:pmid/&rft_ieee_id=7993025&rfr_iscdi=true