Hyperspectral Image Spectral-Spatial Feature Extraction via Tensor Principal Component Analysis
We consider the tensor-based spectral-spatial feature extraction problem for hyperspectral image classification. First, a tensor framework based on circular convolution is proposed. Based on this framework, we extend the traditional principal component analysis (PCA) to its tensorial version tensor...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2017-09, Vol.14 (9), p.1431-1435 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1435 |
---|---|
container_issue | 9 |
container_start_page | 1431 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 14 |
creator | Yuemei Ren Liang Liao Maybank, Stephen John Yanning Zhang Xin Liu |
description | We consider the tensor-based spectral-spatial feature extraction problem for hyperspectral image classification. First, a tensor framework based on circular convolution is proposed. Based on this framework, we extend the traditional principal component analysis (PCA) to its tensorial version tensor PCA (TPCA), which is applied to the spectral-spatial features of hyperspectral image data. The experiments show that the classification accuracy obtained using TPCA features is significantly higher than the accuracies obtained by its rivals. |
doi_str_mv | 10.1109/LGRS.2017.2686878 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2017_2686878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7993025</ieee_id><sourcerecordid>2174482929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-670e9f6fa8a2623fa6211d10df6f847cc62beca9a81a7114b828e9397c259413</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWKsPIF4WPG_NZLOb5FhKbQsFxfbgLaTprKS0mzXZin17s7R4mpmfb4bhI-QR6AiAqpfl7GM1YhTEiFWykkJekQGUpcxpKeC673mZl0p-3pK7GHeUMi6lGBA9P7UYYou2C2afLQ7mC7PVZcxXrelcil_RdMeA2fQ3xbZzvsl-nMnW2EQfsvfgGuvaxE38ofUNNl02bsz-FF28Jze12Ud8uNQhWb9O15N5vnybLSbjZW45ZV1eCYqqrmojDatYUZuKAWyBblMmubC2Yhu0RhkJRgDwjWQSVaGEZaXiUAzJ8_lsG_z3EWOnd_4Y0g9RMxCcS6aYShScKRt8jAFr3QZ3MOGkgepeo-416l6jvmhMO0_nHYeI_7xQqqCsLP4AE1hvXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174482929</pqid></control><display><type>article</type><title>Hyperspectral Image Spectral-Spatial Feature Extraction via Tensor Principal Component Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Yuemei Ren ; Liang Liao ; Maybank, Stephen John ; Yanning Zhang ; Xin Liu</creator><creatorcontrib>Yuemei Ren ; Liang Liao ; Maybank, Stephen John ; Yanning Zhang ; Xin Liu</creatorcontrib><description>We consider the tensor-based spectral-spatial feature extraction problem for hyperspectral image classification. First, a tensor framework based on circular convolution is proposed. Based on this framework, we extend the traditional principal component analysis (PCA) to its tensorial version tensor PCA (TPCA), which is applied to the spectral-spatial features of hyperspectral image data. The experiments show that the classification accuracy obtained using TPCA features is significantly higher than the accuracies obtained by its rivals.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2017.2686878</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Convolution ; Feature extraction ; Fourier transforms ; Frameworks ; hyperspectral image classification ; Hyperspectral imaging ; Image classification ; Mathematical analysis ; Matrix decomposition ; Principal component analysis ; principal component analysis (PCA) ; Principal components analysis ; Spectra ; Tensile stress ; tensor model ; Tensors</subject><ispartof>IEEE geoscience and remote sensing letters, 2017-09, Vol.14 (9), p.1431-1435</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-670e9f6fa8a2623fa6211d10df6f847cc62beca9a81a7114b828e9397c259413</citedby><cites>FETCH-LOGICAL-c402t-670e9f6fa8a2623fa6211d10df6f847cc62beca9a81a7114b828e9397c259413</cites><orcidid>0000-0002-4613-7200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7993025$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Yuemei Ren</creatorcontrib><creatorcontrib>Liang Liao</creatorcontrib><creatorcontrib>Maybank, Stephen John</creatorcontrib><creatorcontrib>Yanning Zhang</creatorcontrib><creatorcontrib>Xin Liu</creatorcontrib><title>Hyperspectral Image Spectral-Spatial Feature Extraction via Tensor Principal Component Analysis</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>We consider the tensor-based spectral-spatial feature extraction problem for hyperspectral image classification. First, a tensor framework based on circular convolution is proposed. Based on this framework, we extend the traditional principal component analysis (PCA) to its tensorial version tensor PCA (TPCA), which is applied to the spectral-spatial features of hyperspectral image data. The experiments show that the classification accuracy obtained using TPCA features is significantly higher than the accuracies obtained by its rivals.</description><subject>Classification</subject><subject>Convolution</subject><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Frameworks</subject><subject>hyperspectral image classification</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>Principal component analysis</subject><subject>principal component analysis (PCA)</subject><subject>Principal components analysis</subject><subject>Spectra</subject><subject>Tensile stress</subject><subject>tensor model</subject><subject>Tensors</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQhoMoWKsPIF4WPG_NZLOb5FhKbQsFxfbgLaTprKS0mzXZin17s7R4mpmfb4bhI-QR6AiAqpfl7GM1YhTEiFWykkJekQGUpcxpKeC673mZl0p-3pK7GHeUMi6lGBA9P7UYYou2C2afLQ7mC7PVZcxXrelcil_RdMeA2fQ3xbZzvsl-nMnW2EQfsvfgGuvaxE38ofUNNl02bsz-FF28Jze12Ud8uNQhWb9O15N5vnybLSbjZW45ZV1eCYqqrmojDatYUZuKAWyBblMmubC2Yhu0RhkJRgDwjWQSVaGEZaXiUAzJ8_lsG_z3EWOnd_4Y0g9RMxCcS6aYShScKRt8jAFr3QZ3MOGkgepeo-416l6jvmhMO0_nHYeI_7xQqqCsLP4AE1hvXw</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Yuemei Ren</creator><creator>Liang Liao</creator><creator>Maybank, Stephen John</creator><creator>Yanning Zhang</creator><creator>Xin Liu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4613-7200</orcidid></search><sort><creationdate>20170901</creationdate><title>Hyperspectral Image Spectral-Spatial Feature Extraction via Tensor Principal Component Analysis</title><author>Yuemei Ren ; Liang Liao ; Maybank, Stephen John ; Yanning Zhang ; Xin Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-670e9f6fa8a2623fa6211d10df6f847cc62beca9a81a7114b828e9397c259413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Classification</topic><topic>Convolution</topic><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Frameworks</topic><topic>hyperspectral image classification</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>Principal component analysis</topic><topic>principal component analysis (PCA)</topic><topic>Principal components analysis</topic><topic>Spectra</topic><topic>Tensile stress</topic><topic>tensor model</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuemei Ren</creatorcontrib><creatorcontrib>Liang Liao</creatorcontrib><creatorcontrib>Maybank, Stephen John</creatorcontrib><creatorcontrib>Yanning Zhang</creatorcontrib><creatorcontrib>Xin Liu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuemei Ren</au><au>Liang Liao</au><au>Maybank, Stephen John</au><au>Yanning Zhang</au><au>Xin Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral Image Spectral-Spatial Feature Extraction via Tensor Principal Component Analysis</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>14</volume><issue>9</issue><spage>1431</spage><epage>1435</epage><pages>1431-1435</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>We consider the tensor-based spectral-spatial feature extraction problem for hyperspectral image classification. First, a tensor framework based on circular convolution is proposed. Based on this framework, we extend the traditional principal component analysis (PCA) to its tensorial version tensor PCA (TPCA), which is applied to the spectral-spatial features of hyperspectral image data. The experiments show that the classification accuracy obtained using TPCA features is significantly higher than the accuracies obtained by its rivals.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2017.2686878</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4613-7200</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2017-09, Vol.14 (9), p.1431-1435 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2017_2686878 |
source | IEEE Electronic Library (IEL) |
subjects | Classification Convolution Feature extraction Fourier transforms Frameworks hyperspectral image classification Hyperspectral imaging Image classification Mathematical analysis Matrix decomposition Principal component analysis principal component analysis (PCA) Principal components analysis Spectra Tensile stress tensor model Tensors |
title | Hyperspectral Image Spectral-Spatial Feature Extraction via Tensor Principal Component Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20Image%20Spectral-Spatial%20Feature%20Extraction%20via%20Tensor%20Principal%20Component%20Analysis&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Yuemei%20Ren&rft.date=2017-09-01&rft.volume=14&rft.issue=9&rft.spage=1431&rft.epage=1435&rft.pages=1431-1435&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2017.2686878&rft_dat=%3Cproquest_cross%3E2174482929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174482929&rft_id=info:pmid/&rft_ieee_id=7993025&rfr_iscdi=true |