Development of INS/GNSS UAV-Borne Vector Gravimetry System
An airborne gravimetry system consisting of an inertial navigation system (INS) and a global navigation satellite system (GNSS) has been proven to perform well in gravity observation. The system is also more cost- or time-effective than satellite missions and terrestrial gravimeters. In this letter,...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2017-05, Vol.14 (5), p.759-763 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 763 |
---|---|
container_issue | 5 |
container_start_page | 759 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 14 |
creator | Lin, Cheng-An Chiang, Kai-Wei Kuo, Chung-Yen |
description | An airborne gravimetry system consisting of an inertial navigation system (INS) and a global navigation satellite system (GNSS) has been proven to perform well in gravity observation. The system is also more cost- or time-effective than satellite missions and terrestrial gravimeters. In this letter, an unmanned aerial vehicle has been developed as a platform to carry the INS/GNSS vector gravimetry system using an unmanned helicopter. In addition to the kinematic mode, the unmanned helicopter can perform the zero velocity update (ZUPT) mode, which is a novel method in the acquisition of gravity. Results show that the accuracies of the horizontal and vertical gravity disturbance from the kinematic mode at crossover points are approximately 6-11 and 4 mGal, respectively, with a 0.5-km resolution. The accuracy of the repeatability in ZUPT mode is evaluated with the accuracies of approximately 2-3 mGal. |
doi_str_mv | 10.1109/LGRS.2017.2679120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2017_2679120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7883837</ieee_id><sourcerecordid>1891160525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-430a5593eb91b00c4bee51a73709064cfa2a2430ea2bce146db1f572fbf5d1d63</originalsourceid><addsrcrecordid>eNo9kFFrwjAUhcPYYM7tB4y9FPZczU2aJtmb060TxME6ZW8hrTegWOuSKvjv16Ls6Z6H75wLHyGPQAcAVA9n2Vc-YBTkgKVSA6NXpAdCqJgKCdddTkQstPq5JXchbChliVKyR14meMRtva9w10S1i6bzfJjN8zxajJbxa-13GC2xbGofZd4e1xU2_hTlp9BgdU9unN0GfLjcPlm8v32PP-LZZzYdj2ZxyTRv4oRTK4TmWGgoKC2TAlGAlVxSTdOkdJZZ1kJoWVEiJOmqACckc4UTK1ilvE-ez7t7X_8eMDRmUx_8rn1pQGmAlAomWgrOVOnrEDw6s_fryvqTAWo6RaZTZDpF5qKo7TydO2tE_OelUlxxyf8A2ExgnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891160525</pqid></control><display><type>article</type><title>Development of INS/GNSS UAV-Borne Vector Gravimetry System</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Cheng-An ; Chiang, Kai-Wei ; Kuo, Chung-Yen</creator><creatorcontrib>Lin, Cheng-An ; Chiang, Kai-Wei ; Kuo, Chung-Yen</creatorcontrib><description>An airborne gravimetry system consisting of an inertial navigation system (INS) and a global navigation satellite system (GNSS) has been proven to perform well in gravity observation. The system is also more cost- or time-effective than satellite missions and terrestrial gravimeters. In this letter, an unmanned aerial vehicle has been developed as a platform to carry the INS/GNSS vector gravimetry system using an unmanned helicopter. In addition to the kinematic mode, the unmanned helicopter can perform the zero velocity update (ZUPT) mode, which is a novel method in the acquisition of gravity. Results show that the accuracies of the horizontal and vertical gravity disturbance from the kinematic mode at crossover points are approximately 6-11 and 4 mGal, respectively, with a 0.5-km resolution. The accuracy of the repeatability in ZUPT mode is evaluated with the accuracies of approximately 2-3 mGal.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2017.2679120</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Aircraft navigation ; Global navigation satellite system ; Gravimeters ; Gravimetry ; Gravitation ; Gravity ; Gravity meters ; Inertial navigation ; Inertial navigation system and global navigation satellite system (INS/GNSS) ; Kalman filters ; Kinematics ; Missions ; Navigation ; Navigation satellites ; Navigation systems ; Remote sensing ; Satellite navigation systems ; Satellites ; Terrestrial environments ; unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles ; Unmanned helicopters ; vector gravimetry ; Velocity ; zero velocity update (ZUPT)</subject><ispartof>IEEE geoscience and remote sensing letters, 2017-05, Vol.14 (5), p.759-763</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-430a5593eb91b00c4bee51a73709064cfa2a2430ea2bce146db1f572fbf5d1d63</citedby><cites>FETCH-LOGICAL-c293t-430a5593eb91b00c4bee51a73709064cfa2a2430ea2bce146db1f572fbf5d1d63</cites><orcidid>0000-0002-3449-995X ; 0000-0002-9527-0227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7883837$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7883837$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, Cheng-An</creatorcontrib><creatorcontrib>Chiang, Kai-Wei</creatorcontrib><creatorcontrib>Kuo, Chung-Yen</creatorcontrib><title>Development of INS/GNSS UAV-Borne Vector Gravimetry System</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>An airborne gravimetry system consisting of an inertial navigation system (INS) and a global navigation satellite system (GNSS) has been proven to perform well in gravity observation. The system is also more cost- or time-effective than satellite missions and terrestrial gravimeters. In this letter, an unmanned aerial vehicle has been developed as a platform to carry the INS/GNSS vector gravimetry system using an unmanned helicopter. In addition to the kinematic mode, the unmanned helicopter can perform the zero velocity update (ZUPT) mode, which is a novel method in the acquisition of gravity. Results show that the accuracies of the horizontal and vertical gravity disturbance from the kinematic mode at crossover points are approximately 6-11 and 4 mGal, respectively, with a 0.5-km resolution. The accuracy of the repeatability in ZUPT mode is evaluated with the accuracies of approximately 2-3 mGal.</description><subject>Acceleration</subject><subject>Aircraft navigation</subject><subject>Global navigation satellite system</subject><subject>Gravimeters</subject><subject>Gravimetry</subject><subject>Gravitation</subject><subject>Gravity</subject><subject>Gravity meters</subject><subject>Inertial navigation</subject><subject>Inertial navigation system and global navigation satellite system (INS/GNSS)</subject><subject>Kalman filters</subject><subject>Kinematics</subject><subject>Missions</subject><subject>Navigation</subject><subject>Navigation satellites</subject><subject>Navigation systems</subject><subject>Remote sensing</subject><subject>Satellite navigation systems</subject><subject>Satellites</subject><subject>Terrestrial environments</subject><subject>unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><subject>Unmanned helicopters</subject><subject>vector gravimetry</subject><subject>Velocity</subject><subject>zero velocity update (ZUPT)</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFrwjAUhcPYYM7tB4y9FPZczU2aJtmb060TxME6ZW8hrTegWOuSKvjv16Ls6Z6H75wLHyGPQAcAVA9n2Vc-YBTkgKVSA6NXpAdCqJgKCdddTkQstPq5JXchbChliVKyR14meMRtva9w10S1i6bzfJjN8zxajJbxa-13GC2xbGofZd4e1xU2_hTlp9BgdU9unN0GfLjcPlm8v32PP-LZZzYdj2ZxyTRv4oRTK4TmWGgoKC2TAlGAlVxSTdOkdJZZ1kJoWVEiJOmqACckc4UTK1ilvE-ez7t7X_8eMDRmUx_8rn1pQGmAlAomWgrOVOnrEDw6s_fryvqTAWo6RaZTZDpF5qKo7TydO2tE_OelUlxxyf8A2ExgnQ</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Lin, Cheng-An</creator><creator>Chiang, Kai-Wei</creator><creator>Kuo, Chung-Yen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3449-995X</orcidid><orcidid>https://orcid.org/0000-0002-9527-0227</orcidid></search><sort><creationdate>20170501</creationdate><title>Development of INS/GNSS UAV-Borne Vector Gravimetry System</title><author>Lin, Cheng-An ; Chiang, Kai-Wei ; Kuo, Chung-Yen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-430a5593eb91b00c4bee51a73709064cfa2a2430ea2bce146db1f572fbf5d1d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acceleration</topic><topic>Aircraft navigation</topic><topic>Global navigation satellite system</topic><topic>Gravimeters</topic><topic>Gravimetry</topic><topic>Gravitation</topic><topic>Gravity</topic><topic>Gravity meters</topic><topic>Inertial navigation</topic><topic>Inertial navigation system and global navigation satellite system (INS/GNSS)</topic><topic>Kalman filters</topic><topic>Kinematics</topic><topic>Missions</topic><topic>Navigation</topic><topic>Navigation satellites</topic><topic>Navigation systems</topic><topic>Remote sensing</topic><topic>Satellite navigation systems</topic><topic>Satellites</topic><topic>Terrestrial environments</topic><topic>unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><topic>Unmanned helicopters</topic><topic>vector gravimetry</topic><topic>Velocity</topic><topic>zero velocity update (ZUPT)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Cheng-An</creatorcontrib><creatorcontrib>Chiang, Kai-Wei</creatorcontrib><creatorcontrib>Kuo, Chung-Yen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Cheng-An</au><au>Chiang, Kai-Wei</au><au>Kuo, Chung-Yen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of INS/GNSS UAV-Borne Vector Gravimetry System</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>14</volume><issue>5</issue><spage>759</spage><epage>763</epage><pages>759-763</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>An airborne gravimetry system consisting of an inertial navigation system (INS) and a global navigation satellite system (GNSS) has been proven to perform well in gravity observation. The system is also more cost- or time-effective than satellite missions and terrestrial gravimeters. In this letter, an unmanned aerial vehicle has been developed as a platform to carry the INS/GNSS vector gravimetry system using an unmanned helicopter. In addition to the kinematic mode, the unmanned helicopter can perform the zero velocity update (ZUPT) mode, which is a novel method in the acquisition of gravity. Results show that the accuracies of the horizontal and vertical gravity disturbance from the kinematic mode at crossover points are approximately 6-11 and 4 mGal, respectively, with a 0.5-km resolution. The accuracy of the repeatability in ZUPT mode is evaluated with the accuracies of approximately 2-3 mGal.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2017.2679120</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3449-995X</orcidid><orcidid>https://orcid.org/0000-0002-9527-0227</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2017-05, Vol.14 (5), p.759-763 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2017_2679120 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Aircraft navigation Global navigation satellite system Gravimeters Gravimetry Gravitation Gravity Gravity meters Inertial navigation Inertial navigation system and global navigation satellite system (INS/GNSS) Kalman filters Kinematics Missions Navigation Navigation satellites Navigation systems Remote sensing Satellite navigation systems Satellites Terrestrial environments unmanned aerial vehicle (UAV) Unmanned aerial vehicles Unmanned helicopters vector gravimetry Velocity zero velocity update (ZUPT) |
title | Development of INS/GNSS UAV-Borne Vector Gravimetry System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A10%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20INS/GNSS%20UAV-Borne%20Vector%20Gravimetry%20System&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Lin,%20Cheng-An&rft.date=2017-05-01&rft.volume=14&rft.issue=5&rft.spage=759&rft.epage=763&rft.pages=759-763&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2017.2679120&rft_dat=%3Cproquest_RIE%3E1891160525%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891160525&rft_id=info:pmid/&rft_ieee_id=7883837&rfr_iscdi=true |