Development of INS/GNSS UAV-Borne Vector Gravimetry System

An airborne gravimetry system consisting of an inertial navigation system (INS) and a global navigation satellite system (GNSS) has been proven to perform well in gravity observation. The system is also more cost- or time-effective than satellite missions and terrestrial gravimeters. In this letter,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2017-05, Vol.14 (5), p.759-763
Hauptverfasser: Lin, Cheng-An, Chiang, Kai-Wei, Kuo, Chung-Yen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 763
container_issue 5
container_start_page 759
container_title IEEE geoscience and remote sensing letters
container_volume 14
creator Lin, Cheng-An
Chiang, Kai-Wei
Kuo, Chung-Yen
description An airborne gravimetry system consisting of an inertial navigation system (INS) and a global navigation satellite system (GNSS) has been proven to perform well in gravity observation. The system is also more cost- or time-effective than satellite missions and terrestrial gravimeters. In this letter, an unmanned aerial vehicle has been developed as a platform to carry the INS/GNSS vector gravimetry system using an unmanned helicopter. In addition to the kinematic mode, the unmanned helicopter can perform the zero velocity update (ZUPT) mode, which is a novel method in the acquisition of gravity. Results show that the accuracies of the horizontal and vertical gravity disturbance from the kinematic mode at crossover points are approximately 6-11 and 4 mGal, respectively, with a 0.5-km resolution. The accuracy of the repeatability in ZUPT mode is evaluated with the accuracies of approximately 2-3 mGal.
doi_str_mv 10.1109/LGRS.2017.2679120
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2017_2679120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7883837</ieee_id><sourcerecordid>1891160525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-430a5593eb91b00c4bee51a73709064cfa2a2430ea2bce146db1f572fbf5d1d63</originalsourceid><addsrcrecordid>eNo9kFFrwjAUhcPYYM7tB4y9FPZczU2aJtmb060TxME6ZW8hrTegWOuSKvjv16Ls6Z6H75wLHyGPQAcAVA9n2Vc-YBTkgKVSA6NXpAdCqJgKCdddTkQstPq5JXchbChliVKyR14meMRtva9w10S1i6bzfJjN8zxajJbxa-13GC2xbGofZd4e1xU2_hTlp9BgdU9unN0GfLjcPlm8v32PP-LZZzYdj2ZxyTRv4oRTK4TmWGgoKC2TAlGAlVxSTdOkdJZZ1kJoWVEiJOmqACckc4UTK1ilvE-ez7t7X_8eMDRmUx_8rn1pQGmAlAomWgrOVOnrEDw6s_fryvqTAWo6RaZTZDpF5qKo7TydO2tE_OelUlxxyf8A2ExgnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891160525</pqid></control><display><type>article</type><title>Development of INS/GNSS UAV-Borne Vector Gravimetry System</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Cheng-An ; Chiang, Kai-Wei ; Kuo, Chung-Yen</creator><creatorcontrib>Lin, Cheng-An ; Chiang, Kai-Wei ; Kuo, Chung-Yen</creatorcontrib><description>An airborne gravimetry system consisting of an inertial navigation system (INS) and a global navigation satellite system (GNSS) has been proven to perform well in gravity observation. The system is also more cost- or time-effective than satellite missions and terrestrial gravimeters. In this letter, an unmanned aerial vehicle has been developed as a platform to carry the INS/GNSS vector gravimetry system using an unmanned helicopter. In addition to the kinematic mode, the unmanned helicopter can perform the zero velocity update (ZUPT) mode, which is a novel method in the acquisition of gravity. Results show that the accuracies of the horizontal and vertical gravity disturbance from the kinematic mode at crossover points are approximately 6-11 and 4 mGal, respectively, with a 0.5-km resolution. The accuracy of the repeatability in ZUPT mode is evaluated with the accuracies of approximately 2-3 mGal.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2017.2679120</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Aircraft navigation ; Global navigation satellite system ; Gravimeters ; Gravimetry ; Gravitation ; Gravity ; Gravity meters ; Inertial navigation ; Inertial navigation system and global navigation satellite system (INS/GNSS) ; Kalman filters ; Kinematics ; Missions ; Navigation ; Navigation satellites ; Navigation systems ; Remote sensing ; Satellite navigation systems ; Satellites ; Terrestrial environments ; unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles ; Unmanned helicopters ; vector gravimetry ; Velocity ; zero velocity update (ZUPT)</subject><ispartof>IEEE geoscience and remote sensing letters, 2017-05, Vol.14 (5), p.759-763</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-430a5593eb91b00c4bee51a73709064cfa2a2430ea2bce146db1f572fbf5d1d63</citedby><cites>FETCH-LOGICAL-c293t-430a5593eb91b00c4bee51a73709064cfa2a2430ea2bce146db1f572fbf5d1d63</cites><orcidid>0000-0002-3449-995X ; 0000-0002-9527-0227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7883837$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7883837$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, Cheng-An</creatorcontrib><creatorcontrib>Chiang, Kai-Wei</creatorcontrib><creatorcontrib>Kuo, Chung-Yen</creatorcontrib><title>Development of INS/GNSS UAV-Borne Vector Gravimetry System</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>An airborne gravimetry system consisting of an inertial navigation system (INS) and a global navigation satellite system (GNSS) has been proven to perform well in gravity observation. The system is also more cost- or time-effective than satellite missions and terrestrial gravimeters. In this letter, an unmanned aerial vehicle has been developed as a platform to carry the INS/GNSS vector gravimetry system using an unmanned helicopter. In addition to the kinematic mode, the unmanned helicopter can perform the zero velocity update (ZUPT) mode, which is a novel method in the acquisition of gravity. Results show that the accuracies of the horizontal and vertical gravity disturbance from the kinematic mode at crossover points are approximately 6-11 and 4 mGal, respectively, with a 0.5-km resolution. The accuracy of the repeatability in ZUPT mode is evaluated with the accuracies of approximately 2-3 mGal.</description><subject>Acceleration</subject><subject>Aircraft navigation</subject><subject>Global navigation satellite system</subject><subject>Gravimeters</subject><subject>Gravimetry</subject><subject>Gravitation</subject><subject>Gravity</subject><subject>Gravity meters</subject><subject>Inertial navigation</subject><subject>Inertial navigation system and global navigation satellite system (INS/GNSS)</subject><subject>Kalman filters</subject><subject>Kinematics</subject><subject>Missions</subject><subject>Navigation</subject><subject>Navigation satellites</subject><subject>Navigation systems</subject><subject>Remote sensing</subject><subject>Satellite navigation systems</subject><subject>Satellites</subject><subject>Terrestrial environments</subject><subject>unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><subject>Unmanned helicopters</subject><subject>vector gravimetry</subject><subject>Velocity</subject><subject>zero velocity update (ZUPT)</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFrwjAUhcPYYM7tB4y9FPZczU2aJtmb060TxME6ZW8hrTegWOuSKvjv16Ls6Z6H75wLHyGPQAcAVA9n2Vc-YBTkgKVSA6NXpAdCqJgKCdddTkQstPq5JXchbChliVKyR14meMRtva9w10S1i6bzfJjN8zxajJbxa-13GC2xbGofZd4e1xU2_hTlp9BgdU9unN0GfLjcPlm8v32PP-LZZzYdj2ZxyTRv4oRTK4TmWGgoKC2TAlGAlVxSTdOkdJZZ1kJoWVEiJOmqACckc4UTK1ilvE-ez7t7X_8eMDRmUx_8rn1pQGmAlAomWgrOVOnrEDw6s_fryvqTAWo6RaZTZDpF5qKo7TydO2tE_OelUlxxyf8A2ExgnQ</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Lin, Cheng-An</creator><creator>Chiang, Kai-Wei</creator><creator>Kuo, Chung-Yen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3449-995X</orcidid><orcidid>https://orcid.org/0000-0002-9527-0227</orcidid></search><sort><creationdate>20170501</creationdate><title>Development of INS/GNSS UAV-Borne Vector Gravimetry System</title><author>Lin, Cheng-An ; Chiang, Kai-Wei ; Kuo, Chung-Yen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-430a5593eb91b00c4bee51a73709064cfa2a2430ea2bce146db1f572fbf5d1d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acceleration</topic><topic>Aircraft navigation</topic><topic>Global navigation satellite system</topic><topic>Gravimeters</topic><topic>Gravimetry</topic><topic>Gravitation</topic><topic>Gravity</topic><topic>Gravity meters</topic><topic>Inertial navigation</topic><topic>Inertial navigation system and global navigation satellite system (INS/GNSS)</topic><topic>Kalman filters</topic><topic>Kinematics</topic><topic>Missions</topic><topic>Navigation</topic><topic>Navigation satellites</topic><topic>Navigation systems</topic><topic>Remote sensing</topic><topic>Satellite navigation systems</topic><topic>Satellites</topic><topic>Terrestrial environments</topic><topic>unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><topic>Unmanned helicopters</topic><topic>vector gravimetry</topic><topic>Velocity</topic><topic>zero velocity update (ZUPT)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Cheng-An</creatorcontrib><creatorcontrib>Chiang, Kai-Wei</creatorcontrib><creatorcontrib>Kuo, Chung-Yen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Cheng-An</au><au>Chiang, Kai-Wei</au><au>Kuo, Chung-Yen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of INS/GNSS UAV-Borne Vector Gravimetry System</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>14</volume><issue>5</issue><spage>759</spage><epage>763</epage><pages>759-763</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>An airborne gravimetry system consisting of an inertial navigation system (INS) and a global navigation satellite system (GNSS) has been proven to perform well in gravity observation. The system is also more cost- or time-effective than satellite missions and terrestrial gravimeters. In this letter, an unmanned aerial vehicle has been developed as a platform to carry the INS/GNSS vector gravimetry system using an unmanned helicopter. In addition to the kinematic mode, the unmanned helicopter can perform the zero velocity update (ZUPT) mode, which is a novel method in the acquisition of gravity. Results show that the accuracies of the horizontal and vertical gravity disturbance from the kinematic mode at crossover points are approximately 6-11 and 4 mGal, respectively, with a 0.5-km resolution. The accuracy of the repeatability in ZUPT mode is evaluated with the accuracies of approximately 2-3 mGal.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2017.2679120</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3449-995X</orcidid><orcidid>https://orcid.org/0000-0002-9527-0227</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2017-05, Vol.14 (5), p.759-763
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2017_2679120
source IEEE Electronic Library (IEL)
subjects Acceleration
Aircraft navigation
Global navigation satellite system
Gravimeters
Gravimetry
Gravitation
Gravity
Gravity meters
Inertial navigation
Inertial navigation system and global navigation satellite system (INS/GNSS)
Kalman filters
Kinematics
Missions
Navigation
Navigation satellites
Navigation systems
Remote sensing
Satellite navigation systems
Satellites
Terrestrial environments
unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
Unmanned helicopters
vector gravimetry
Velocity
zero velocity update (ZUPT)
title Development of INS/GNSS UAV-Borne Vector Gravimetry System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A10%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20INS/GNSS%20UAV-Borne%20Vector%20Gravimetry%20System&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Lin,%20Cheng-An&rft.date=2017-05-01&rft.volume=14&rft.issue=5&rft.spage=759&rft.epage=763&rft.pages=759-763&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2017.2679120&rft_dat=%3Cproquest_RIE%3E1891160525%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891160525&rft_id=info:pmid/&rft_ieee_id=7883837&rfr_iscdi=true