Adaptive and Fast Prescreening for SAR ATR via Change Detection Technique

Change detection is a process of identifying changes in the state of objects between the reference and test images. This letter presents a target prescreening method that employs the change detection technique for automatic target recognition in synthetic aperture radar (SAR) images. First, four tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2016-11, Vol.13 (11), p.1691-1695
Hauptverfasser: Quan, Sinong, Xiong, Boli, Zhang, Siqian, Yu, Meiting, Kuang, Gangyao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1695
container_issue 11
container_start_page 1691
container_title IEEE geoscience and remote sensing letters
container_volume 13
creator Quan, Sinong
Xiong, Boli
Zhang, Siqian
Yu, Meiting
Kuang, Gangyao
description Change detection is a process of identifying changes in the state of objects between the reference and test images. This letter presents a target prescreening method that employs the change detection technique for automatic target recognition in synthetic aperture radar (SAR) images. First, four translated versions of an original SAR image are generated, and the corresponding four likelihood ratio images are computed. Then, a robust threshold is derived from the ratio of the histogram at two adjacent gray-level values of the likelihood ratio images. Finally, the threshold is applied to perform the prescreening. The proposed method implements the procedure without any prior knowledge and overcomes the weak adaptability of traditional algorithms. Two different real X-band airborne SAR images acquired over Beijing are used to quantitatively and qualitatively demonstrate the effectiveness of the proposed method.
doi_str_mv 10.1109/LGRS.2016.2604487
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2016_2604487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7563893</ieee_id><sourcerecordid>4224108851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-a56c8f07679926bf964b1aafb1814be53ae1442b1708ac1eefcb39160f19993d3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFZ_gLgZcJ06L_ORmWWothYKSlvB3TCZvmlTNKmTtOC_N6HF1XuLc--FQ8g9sBEAM0_z6WI5ShmoUaqYEDq7IAOQUidMZnDZ_0Im0ujPa3LTNDvGUqF1NiCzfO32bXlE6qo1nbimpe8RGx8Rq7La0FBHuswXNF8t6LF0dLx11QbpM7bo27Ku6Ar9tip_DnhLroL7avDufIfkY_KyGr8m87fpbJzPE88VbxMnldeBZSozJlVFMEoU4FwoQIMoUHKHIERaQMa084AYfMENKBbAGMPXfEgeT737WHezTWt39SFW3aQFzYFxLYToKDhRPtZNEzHYfSy_Xfy1wGxvzPbGbG_Mno11mYdTpkTEfz6TimvD-R-pY2XL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831038444</pqid></control><display><type>article</type><title>Adaptive and Fast Prescreening for SAR ATR via Change Detection Technique</title><source>IEEE Electronic Library (IEL)</source><creator>Quan, Sinong ; Xiong, Boli ; Zhang, Siqian ; Yu, Meiting ; Kuang, Gangyao</creator><creatorcontrib>Quan, Sinong ; Xiong, Boli ; Zhang, Siqian ; Yu, Meiting ; Kuang, Gangyao</creatorcontrib><description>Change detection is a process of identifying changes in the state of objects between the reference and test images. This letter presents a target prescreening method that employs the change detection technique for automatic target recognition in synthetic aperture radar (SAR) images. First, four translated versions of an original SAR image are generated, and the corresponding four likelihood ratio images are computed. Then, a robust threshold is derived from the ratio of the histogram at two adjacent gray-level values of the likelihood ratio images. Finally, the threshold is applied to perform the prescreening. The proposed method implements the procedure without any prior knowledge and overcomes the weak adaptability of traditional algorithms. Two different real X-band airborne SAR images acquired over Beijing are used to quantitatively and qualitatively demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2016.2604487</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Automatic target recognition (ATR) ; change detection ; Clutter ; Detectors ; Histograms ; Real-time systems ; Robustness ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; target prescreening ; Target recognition</subject><ispartof>IEEE geoscience and remote sensing letters, 2016-11, Vol.13 (11), p.1691-1695</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-a56c8f07679926bf964b1aafb1814be53ae1442b1708ac1eefcb39160f19993d3</citedby><cites>FETCH-LOGICAL-c363t-a56c8f07679926bf964b1aafb1814be53ae1442b1708ac1eefcb39160f19993d3</cites><orcidid>0000-0002-6908-1975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7563893$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7563893$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Quan, Sinong</creatorcontrib><creatorcontrib>Xiong, Boli</creatorcontrib><creatorcontrib>Zhang, Siqian</creatorcontrib><creatorcontrib>Yu, Meiting</creatorcontrib><creatorcontrib>Kuang, Gangyao</creatorcontrib><title>Adaptive and Fast Prescreening for SAR ATR via Change Detection Technique</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Change detection is a process of identifying changes in the state of objects between the reference and test images. This letter presents a target prescreening method that employs the change detection technique for automatic target recognition in synthetic aperture radar (SAR) images. First, four translated versions of an original SAR image are generated, and the corresponding four likelihood ratio images are computed. Then, a robust threshold is derived from the ratio of the histogram at two adjacent gray-level values of the likelihood ratio images. Finally, the threshold is applied to perform the prescreening. The proposed method implements the procedure without any prior knowledge and overcomes the weak adaptability of traditional algorithms. Two different real X-band airborne SAR images acquired over Beijing are used to quantitatively and qualitatively demonstrate the effectiveness of the proposed method.</description><subject>Automatic target recognition (ATR)</subject><subject>change detection</subject><subject>Clutter</subject><subject>Detectors</subject><subject>Histograms</subject><subject>Real-time systems</subject><subject>Robustness</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>target prescreening</subject><subject>Target recognition</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AURQdRsFZ_gLgZcJ06L_ORmWWothYKSlvB3TCZvmlTNKmTtOC_N6HF1XuLc--FQ8g9sBEAM0_z6WI5ShmoUaqYEDq7IAOQUidMZnDZ_0Im0ujPa3LTNDvGUqF1NiCzfO32bXlE6qo1nbimpe8RGx8Rq7La0FBHuswXNF8t6LF0dLx11QbpM7bo27Ku6Ar9tip_DnhLroL7avDufIfkY_KyGr8m87fpbJzPE88VbxMnldeBZSozJlVFMEoU4FwoQIMoUHKHIERaQMa084AYfMENKBbAGMPXfEgeT737WHezTWt39SFW3aQFzYFxLYToKDhRPtZNEzHYfSy_Xfy1wGxvzPbGbG_Mno11mYdTpkTEfz6TimvD-R-pY2XL</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Quan, Sinong</creator><creator>Xiong, Boli</creator><creator>Zhang, Siqian</creator><creator>Yu, Meiting</creator><creator>Kuang, Gangyao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6908-1975</orcidid></search><sort><creationdate>20161101</creationdate><title>Adaptive and Fast Prescreening for SAR ATR via Change Detection Technique</title><author>Quan, Sinong ; Xiong, Boli ; Zhang, Siqian ; Yu, Meiting ; Kuang, Gangyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-a56c8f07679926bf964b1aafb1814be53ae1442b1708ac1eefcb39160f19993d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automatic target recognition (ATR)</topic><topic>change detection</topic><topic>Clutter</topic><topic>Detectors</topic><topic>Histograms</topic><topic>Real-time systems</topic><topic>Robustness</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>target prescreening</topic><topic>Target recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quan, Sinong</creatorcontrib><creatorcontrib>Xiong, Boli</creatorcontrib><creatorcontrib>Zhang, Siqian</creatorcontrib><creatorcontrib>Yu, Meiting</creatorcontrib><creatorcontrib>Kuang, Gangyao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Quan, Sinong</au><au>Xiong, Boli</au><au>Zhang, Siqian</au><au>Yu, Meiting</au><au>Kuang, Gangyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive and Fast Prescreening for SAR ATR via Change Detection Technique</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>13</volume><issue>11</issue><spage>1691</spage><epage>1695</epage><pages>1691-1695</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Change detection is a process of identifying changes in the state of objects between the reference and test images. This letter presents a target prescreening method that employs the change detection technique for automatic target recognition in synthetic aperture radar (SAR) images. First, four translated versions of an original SAR image are generated, and the corresponding four likelihood ratio images are computed. Then, a robust threshold is derived from the ratio of the histogram at two adjacent gray-level values of the likelihood ratio images. Finally, the threshold is applied to perform the prescreening. The proposed method implements the procedure without any prior knowledge and overcomes the weak adaptability of traditional algorithms. Two different real X-band airborne SAR images acquired over Beijing are used to quantitatively and qualitatively demonstrate the effectiveness of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2016.2604487</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6908-1975</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2016-11, Vol.13 (11), p.1691-1695
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2016_2604487
source IEEE Electronic Library (IEL)
subjects Automatic target recognition (ATR)
change detection
Clutter
Detectors
Histograms
Real-time systems
Robustness
Synthetic aperture radar
synthetic aperture radar (SAR)
target prescreening
Target recognition
title Adaptive and Fast Prescreening for SAR ATR via Change Detection Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A17%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20and%20Fast%20Prescreening%20for%20SAR%20ATR%20via%20Change%20Detection%20Technique&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Quan,%20Sinong&rft.date=2016-11-01&rft.volume=13&rft.issue=11&rft.spage=1691&rft.epage=1695&rft.pages=1691-1695&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2016.2604487&rft_dat=%3Cproquest_RIE%3E4224108851%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1831038444&rft_id=info:pmid/&rft_ieee_id=7563893&rfr_iscdi=true