Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data

The importance of land surface temperature (LST) retrieved from high to medium spatial resolution remote sensing data for many environmental studies, particularly the applications related to water resources management over agricultural sites, was a key factor for the final decision of including a th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2014-10, Vol.11 (10), p.1840-1843
Hauptverfasser: Jimenez-Munoz, Juan C., Sobrino, Jose A., Skokovic, Drazen, Mattar, Cristian, Cristobal, Jordi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1843
container_issue 10
container_start_page 1840
container_title IEEE geoscience and remote sensing letters
container_volume 11
creator Jimenez-Munoz, Juan C.
Sobrino, Jose A.
Skokovic, Drazen
Mattar, Cristian
Cristobal, Jordi
description The importance of land surface temperature (LST) retrieved from high to medium spatial resolution remote sensing data for many environmental studies, particularly the applications related to water resources management over agricultural sites, was a key factor for the final decision of including a thermal infrared (TIR) instrument on board the Landsat Data Continuity Mission or Landsat-8. This new TIR sensor (TIRS) includes two TIR bands in the atmospheric window between 10 and 12 μm, thus allowing the application of split-window (SW) algorithms in addition to single-channel (SC) algorithms or direct inversions of the radiative transfer equation used in previous sensors on board the Landsat platforms, with only one TIR band. In this letter, we propose SC and SW algorithms to be applied to Landsat-8 TIRS data for LST retrieval. Algorithms were tested with simulated data obtained from forward simulations using atmospheric profile databases and emissivity spectra extracted from spectral libraries. Results show mean errors typically below 1.5 K for both SC and SW algorithms, with slightly better results for the SW algorithm than for the SC algorithm with increasing atmospheric water vapor contents.
doi_str_mv 10.1109/LGRS.2014.2312032
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2014_2312032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6784508</ieee_id><sourcerecordid>3387984811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-d5acc6d43eac5913a6b9fdf56fedb20b11804e4e16354b58bb57151a86f59f103</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFZ_gHhZ8Jy6k91NN0dRWwsRoa3ibdkks7SlSepsIvjvTWjxNAPz3hvex9gtiAmASB-y-XI1iQWoSSwhFjI-YyPQ2kRCT-F82JWOdGq-LtlVCDshYmXMdMQ-M1eXfNWRdwXyNVYHJNd2hHyJLW3xx-35G7abpgx8Rk3FB31wbWT4eoNU9edF7ckR9ilYh4b4s2vdNbvwbh_w5jTH7GP2sn56jbL3-eLpMYsKqaCNSu2KIimVRFfoFKRL8tSXXiceyzwWOYARChVCIrXKtcnzvo0GZxKvUw9Cjtn9MfdAzXeHobW7pqO6f2n7xqlWYJK4V8FRVVATAqG3B9pWjn4tCDvgswM-O-CzJ3y95-7o2SLivz6ZGqWFkX_TvWtX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1549541862</pqid></control><display><type>article</type><title>Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data</title><source>IEEE Electronic Library (IEL)</source><creator>Jimenez-Munoz, Juan C. ; Sobrino, Jose A. ; Skokovic, Drazen ; Mattar, Cristian ; Cristobal, Jordi</creator><creatorcontrib>Jimenez-Munoz, Juan C. ; Sobrino, Jose A. ; Skokovic, Drazen ; Mattar, Cristian ; Cristobal, Jordi</creatorcontrib><description>The importance of land surface temperature (LST) retrieved from high to medium spatial resolution remote sensing data for many environmental studies, particularly the applications related to water resources management over agricultural sites, was a key factor for the final decision of including a thermal infrared (TIR) instrument on board the Landsat Data Continuity Mission or Landsat-8. This new TIR sensor (TIRS) includes two TIR bands in the atmospheric window between 10 and 12 μm, thus allowing the application of split-window (SW) algorithms in addition to single-channel (SC) algorithms or direct inversions of the radiative transfer equation used in previous sensors on board the Landsat platforms, with only one TIR band. In this letter, we propose SC and SW algorithms to be applied to Landsat-8 TIRS data for LST retrieval. Algorithms were tested with simulated data obtained from forward simulations using atmospheric profile databases and emissivity spectra extracted from spectral libraries. Results show mean errors typically below 1.5 K for both SC and SW algorithms, with slightly better results for the SW algorithm than for the SC algorithm with increasing atmospheric water vapor contents.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2014.2312032</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Atmospheric modeling ; Earth ; Land surface temperature ; Land surface temperature (LST) ; Landsat Data Continuity Mission (LDCM) ; Landsat satellites ; Landsat-8 ; Meteorology ; Remote sensing ; Satellites ; single-channel (SC) algorithm ; split-window (SW) algorithm ; Temperature sensors ; thermal infrared (TIR)</subject><ispartof>IEEE geoscience and remote sensing letters, 2014-10, Vol.11 (10), p.1840-1843</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-d5acc6d43eac5913a6b9fdf56fedb20b11804e4e16354b58bb57151a86f59f103</citedby><cites>FETCH-LOGICAL-c341t-d5acc6d43eac5913a6b9fdf56fedb20b11804e4e16354b58bb57151a86f59f103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6784508$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6784508$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jimenez-Munoz, Juan C.</creatorcontrib><creatorcontrib>Sobrino, Jose A.</creatorcontrib><creatorcontrib>Skokovic, Drazen</creatorcontrib><creatorcontrib>Mattar, Cristian</creatorcontrib><creatorcontrib>Cristobal, Jordi</creatorcontrib><title>Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>The importance of land surface temperature (LST) retrieved from high to medium spatial resolution remote sensing data for many environmental studies, particularly the applications related to water resources management over agricultural sites, was a key factor for the final decision of including a thermal infrared (TIR) instrument on board the Landsat Data Continuity Mission or Landsat-8. This new TIR sensor (TIRS) includes two TIR bands in the atmospheric window between 10 and 12 μm, thus allowing the application of split-window (SW) algorithms in addition to single-channel (SC) algorithms or direct inversions of the radiative transfer equation used in previous sensors on board the Landsat platforms, with only one TIR band. In this letter, we propose SC and SW algorithms to be applied to Landsat-8 TIRS data for LST retrieval. Algorithms were tested with simulated data obtained from forward simulations using atmospheric profile databases and emissivity spectra extracted from spectral libraries. Results show mean errors typically below 1.5 K for both SC and SW algorithms, with slightly better results for the SW algorithm than for the SC algorithm with increasing atmospheric water vapor contents.</description><subject>Algorithms</subject><subject>Atmospheric modeling</subject><subject>Earth</subject><subject>Land surface temperature</subject><subject>Land surface temperature (LST)</subject><subject>Landsat Data Continuity Mission (LDCM)</subject><subject>Landsat satellites</subject><subject>Landsat-8</subject><subject>Meteorology</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>single-channel (SC) algorithm</subject><subject>split-window (SW) algorithm</subject><subject>Temperature sensors</subject><subject>thermal infrared (TIR)</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQhRdRsFZ_gHhZ8Jy6k91NN0dRWwsRoa3ibdkks7SlSepsIvjvTWjxNAPz3hvex9gtiAmASB-y-XI1iQWoSSwhFjI-YyPQ2kRCT-F82JWOdGq-LtlVCDshYmXMdMQ-M1eXfNWRdwXyNVYHJNd2hHyJLW3xx-35G7abpgx8Rk3FB31wbWT4eoNU9edF7ckR9ilYh4b4s2vdNbvwbh_w5jTH7GP2sn56jbL3-eLpMYsKqaCNSu2KIimVRFfoFKRL8tSXXiceyzwWOYARChVCIrXKtcnzvo0GZxKvUw9Cjtn9MfdAzXeHobW7pqO6f2n7xqlWYJK4V8FRVVATAqG3B9pWjn4tCDvgswM-O-CzJ3y95-7o2SLivz6ZGqWFkX_TvWtX</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Jimenez-Munoz, Juan C.</creator><creator>Sobrino, Jose A.</creator><creator>Skokovic, Drazen</creator><creator>Mattar, Cristian</creator><creator>Cristobal, Jordi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141001</creationdate><title>Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data</title><author>Jimenez-Munoz, Juan C. ; Sobrino, Jose A. ; Skokovic, Drazen ; Mattar, Cristian ; Cristobal, Jordi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-d5acc6d43eac5913a6b9fdf56fedb20b11804e4e16354b58bb57151a86f59f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Atmospheric modeling</topic><topic>Earth</topic><topic>Land surface temperature</topic><topic>Land surface temperature (LST)</topic><topic>Landsat Data Continuity Mission (LDCM)</topic><topic>Landsat satellites</topic><topic>Landsat-8</topic><topic>Meteorology</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>single-channel (SC) algorithm</topic><topic>split-window (SW) algorithm</topic><topic>Temperature sensors</topic><topic>thermal infrared (TIR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jimenez-Munoz, Juan C.</creatorcontrib><creatorcontrib>Sobrino, Jose A.</creatorcontrib><creatorcontrib>Skokovic, Drazen</creatorcontrib><creatorcontrib>Mattar, Cristian</creatorcontrib><creatorcontrib>Cristobal, Jordi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jimenez-Munoz, Juan C.</au><au>Sobrino, Jose A.</au><au>Skokovic, Drazen</au><au>Mattar, Cristian</au><au>Cristobal, Jordi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>11</volume><issue>10</issue><spage>1840</spage><epage>1843</epage><pages>1840-1843</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>The importance of land surface temperature (LST) retrieved from high to medium spatial resolution remote sensing data for many environmental studies, particularly the applications related to water resources management over agricultural sites, was a key factor for the final decision of including a thermal infrared (TIR) instrument on board the Landsat Data Continuity Mission or Landsat-8. This new TIR sensor (TIRS) includes two TIR bands in the atmospheric window between 10 and 12 μm, thus allowing the application of split-window (SW) algorithms in addition to single-channel (SC) algorithms or direct inversions of the radiative transfer equation used in previous sensors on board the Landsat platforms, with only one TIR band. In this letter, we propose SC and SW algorithms to be applied to Landsat-8 TIRS data for LST retrieval. Algorithms were tested with simulated data obtained from forward simulations using atmospheric profile databases and emissivity spectra extracted from spectral libraries. Results show mean errors typically below 1.5 K for both SC and SW algorithms, with slightly better results for the SW algorithm than for the SC algorithm with increasing atmospheric water vapor contents.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2014.2312032</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2014-10, Vol.11 (10), p.1840-1843
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2014_2312032
source IEEE Electronic Library (IEL)
subjects Algorithms
Atmospheric modeling
Earth
Land surface temperature
Land surface temperature (LST)
Landsat Data Continuity Mission (LDCM)
Landsat satellites
Landsat-8
Meteorology
Remote sensing
Satellites
single-channel (SC) algorithm
split-window (SW) algorithm
Temperature sensors
thermal infrared (TIR)
title Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T06%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Land%20Surface%20Temperature%20Retrieval%20Methods%20From%20Landsat-8%20Thermal%20Infrared%20Sensor%20Data&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Jimenez-Munoz,%20Juan%20C.&rft.date=2014-10-01&rft.volume=11&rft.issue=10&rft.spage=1840&rft.epage=1843&rft.pages=1840-1843&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2014.2312032&rft_dat=%3Cproquest_RIE%3E3387984811%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1549541862&rft_id=info:pmid/&rft_ieee_id=6784508&rfr_iscdi=true