Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data
The importance of land surface temperature (LST) retrieved from high to medium spatial resolution remote sensing data for many environmental studies, particularly the applications related to water resources management over agricultural sites, was a key factor for the final decision of including a th...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2014-10, Vol.11 (10), p.1840-1843 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1843 |
---|---|
container_issue | 10 |
container_start_page | 1840 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 11 |
creator | Jimenez-Munoz, Juan C. Sobrino, Jose A. Skokovic, Drazen Mattar, Cristian Cristobal, Jordi |
description | The importance of land surface temperature (LST) retrieved from high to medium spatial resolution remote sensing data for many environmental studies, particularly the applications related to water resources management over agricultural sites, was a key factor for the final decision of including a thermal infrared (TIR) instrument on board the Landsat Data Continuity Mission or Landsat-8. This new TIR sensor (TIRS) includes two TIR bands in the atmospheric window between 10 and 12 μm, thus allowing the application of split-window (SW) algorithms in addition to single-channel (SC) algorithms or direct inversions of the radiative transfer equation used in previous sensors on board the Landsat platforms, with only one TIR band. In this letter, we propose SC and SW algorithms to be applied to Landsat-8 TIRS data for LST retrieval. Algorithms were tested with simulated data obtained from forward simulations using atmospheric profile databases and emissivity spectra extracted from spectral libraries. Results show mean errors typically below 1.5 K for both SC and SW algorithms, with slightly better results for the SW algorithm than for the SC algorithm with increasing atmospheric water vapor contents. |
doi_str_mv | 10.1109/LGRS.2014.2312032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2014_2312032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6784508</ieee_id><sourcerecordid>3387984811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-d5acc6d43eac5913a6b9fdf56fedb20b11804e4e16354b58bb57151a86f59f103</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFZ_gHhZ8Jy6k91NN0dRWwsRoa3ibdkks7SlSepsIvjvTWjxNAPz3hvex9gtiAmASB-y-XI1iQWoSSwhFjI-YyPQ2kRCT-F82JWOdGq-LtlVCDshYmXMdMQ-M1eXfNWRdwXyNVYHJNd2hHyJLW3xx-35G7abpgx8Rk3FB31wbWT4eoNU9edF7ckR9ilYh4b4s2vdNbvwbh_w5jTH7GP2sn56jbL3-eLpMYsKqaCNSu2KIimVRFfoFKRL8tSXXiceyzwWOYARChVCIrXKtcnzvo0GZxKvUw9Cjtn9MfdAzXeHobW7pqO6f2n7xqlWYJK4V8FRVVATAqG3B9pWjn4tCDvgswM-O-CzJ3y95-7o2SLivz6ZGqWFkX_TvWtX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1549541862</pqid></control><display><type>article</type><title>Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data</title><source>IEEE Electronic Library (IEL)</source><creator>Jimenez-Munoz, Juan C. ; Sobrino, Jose A. ; Skokovic, Drazen ; Mattar, Cristian ; Cristobal, Jordi</creator><creatorcontrib>Jimenez-Munoz, Juan C. ; Sobrino, Jose A. ; Skokovic, Drazen ; Mattar, Cristian ; Cristobal, Jordi</creatorcontrib><description>The importance of land surface temperature (LST) retrieved from high to medium spatial resolution remote sensing data for many environmental studies, particularly the applications related to water resources management over agricultural sites, was a key factor for the final decision of including a thermal infrared (TIR) instrument on board the Landsat Data Continuity Mission or Landsat-8. This new TIR sensor (TIRS) includes two TIR bands in the atmospheric window between 10 and 12 μm, thus allowing the application of split-window (SW) algorithms in addition to single-channel (SC) algorithms or direct inversions of the radiative transfer equation used in previous sensors on board the Landsat platforms, with only one TIR band. In this letter, we propose SC and SW algorithms to be applied to Landsat-8 TIRS data for LST retrieval. Algorithms were tested with simulated data obtained from forward simulations using atmospheric profile databases and emissivity spectra extracted from spectral libraries. Results show mean errors typically below 1.5 K for both SC and SW algorithms, with slightly better results for the SW algorithm than for the SC algorithm with increasing atmospheric water vapor contents.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2014.2312032</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Atmospheric modeling ; Earth ; Land surface temperature ; Land surface temperature (LST) ; Landsat Data Continuity Mission (LDCM) ; Landsat satellites ; Landsat-8 ; Meteorology ; Remote sensing ; Satellites ; single-channel (SC) algorithm ; split-window (SW) algorithm ; Temperature sensors ; thermal infrared (TIR)</subject><ispartof>IEEE geoscience and remote sensing letters, 2014-10, Vol.11 (10), p.1840-1843</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-d5acc6d43eac5913a6b9fdf56fedb20b11804e4e16354b58bb57151a86f59f103</citedby><cites>FETCH-LOGICAL-c341t-d5acc6d43eac5913a6b9fdf56fedb20b11804e4e16354b58bb57151a86f59f103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6784508$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6784508$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jimenez-Munoz, Juan C.</creatorcontrib><creatorcontrib>Sobrino, Jose A.</creatorcontrib><creatorcontrib>Skokovic, Drazen</creatorcontrib><creatorcontrib>Mattar, Cristian</creatorcontrib><creatorcontrib>Cristobal, Jordi</creatorcontrib><title>Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>The importance of land surface temperature (LST) retrieved from high to medium spatial resolution remote sensing data for many environmental studies, particularly the applications related to water resources management over agricultural sites, was a key factor for the final decision of including a thermal infrared (TIR) instrument on board the Landsat Data Continuity Mission or Landsat-8. This new TIR sensor (TIRS) includes two TIR bands in the atmospheric window between 10 and 12 μm, thus allowing the application of split-window (SW) algorithms in addition to single-channel (SC) algorithms or direct inversions of the radiative transfer equation used in previous sensors on board the Landsat platforms, with only one TIR band. In this letter, we propose SC and SW algorithms to be applied to Landsat-8 TIRS data for LST retrieval. Algorithms were tested with simulated data obtained from forward simulations using atmospheric profile databases and emissivity spectra extracted from spectral libraries. Results show mean errors typically below 1.5 K for both SC and SW algorithms, with slightly better results for the SW algorithm than for the SC algorithm with increasing atmospheric water vapor contents.</description><subject>Algorithms</subject><subject>Atmospheric modeling</subject><subject>Earth</subject><subject>Land surface temperature</subject><subject>Land surface temperature (LST)</subject><subject>Landsat Data Continuity Mission (LDCM)</subject><subject>Landsat satellites</subject><subject>Landsat-8</subject><subject>Meteorology</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>single-channel (SC) algorithm</subject><subject>split-window (SW) algorithm</subject><subject>Temperature sensors</subject><subject>thermal infrared (TIR)</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQhRdRsFZ_gHhZ8Jy6k91NN0dRWwsRoa3ibdkks7SlSepsIvjvTWjxNAPz3hvex9gtiAmASB-y-XI1iQWoSSwhFjI-YyPQ2kRCT-F82JWOdGq-LtlVCDshYmXMdMQ-M1eXfNWRdwXyNVYHJNd2hHyJLW3xx-35G7abpgx8Rk3FB31wbWT4eoNU9edF7ckR9ilYh4b4s2vdNbvwbh_w5jTH7GP2sn56jbL3-eLpMYsKqaCNSu2KIimVRFfoFKRL8tSXXiceyzwWOYARChVCIrXKtcnzvo0GZxKvUw9Cjtn9MfdAzXeHobW7pqO6f2n7xqlWYJK4V8FRVVATAqG3B9pWjn4tCDvgswM-O-CzJ3y95-7o2SLivz6ZGqWFkX_TvWtX</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Jimenez-Munoz, Juan C.</creator><creator>Sobrino, Jose A.</creator><creator>Skokovic, Drazen</creator><creator>Mattar, Cristian</creator><creator>Cristobal, Jordi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141001</creationdate><title>Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data</title><author>Jimenez-Munoz, Juan C. ; Sobrino, Jose A. ; Skokovic, Drazen ; Mattar, Cristian ; Cristobal, Jordi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-d5acc6d43eac5913a6b9fdf56fedb20b11804e4e16354b58bb57151a86f59f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Atmospheric modeling</topic><topic>Earth</topic><topic>Land surface temperature</topic><topic>Land surface temperature (LST)</topic><topic>Landsat Data Continuity Mission (LDCM)</topic><topic>Landsat satellites</topic><topic>Landsat-8</topic><topic>Meteorology</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>single-channel (SC) algorithm</topic><topic>split-window (SW) algorithm</topic><topic>Temperature sensors</topic><topic>thermal infrared (TIR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jimenez-Munoz, Juan C.</creatorcontrib><creatorcontrib>Sobrino, Jose A.</creatorcontrib><creatorcontrib>Skokovic, Drazen</creatorcontrib><creatorcontrib>Mattar, Cristian</creatorcontrib><creatorcontrib>Cristobal, Jordi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jimenez-Munoz, Juan C.</au><au>Sobrino, Jose A.</au><au>Skokovic, Drazen</au><au>Mattar, Cristian</au><au>Cristobal, Jordi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>11</volume><issue>10</issue><spage>1840</spage><epage>1843</epage><pages>1840-1843</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>The importance of land surface temperature (LST) retrieved from high to medium spatial resolution remote sensing data for many environmental studies, particularly the applications related to water resources management over agricultural sites, was a key factor for the final decision of including a thermal infrared (TIR) instrument on board the Landsat Data Continuity Mission or Landsat-8. This new TIR sensor (TIRS) includes two TIR bands in the atmospheric window between 10 and 12 μm, thus allowing the application of split-window (SW) algorithms in addition to single-channel (SC) algorithms or direct inversions of the radiative transfer equation used in previous sensors on board the Landsat platforms, with only one TIR band. In this letter, we propose SC and SW algorithms to be applied to Landsat-8 TIRS data for LST retrieval. Algorithms were tested with simulated data obtained from forward simulations using atmospheric profile databases and emissivity spectra extracted from spectral libraries. Results show mean errors typically below 1.5 K for both SC and SW algorithms, with slightly better results for the SW algorithm than for the SC algorithm with increasing atmospheric water vapor contents.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2014.2312032</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2014-10, Vol.11 (10), p.1840-1843 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2014_2312032 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Atmospheric modeling Earth Land surface temperature Land surface temperature (LST) Landsat Data Continuity Mission (LDCM) Landsat satellites Landsat-8 Meteorology Remote sensing Satellites single-channel (SC) algorithm split-window (SW) algorithm Temperature sensors thermal infrared (TIR) |
title | Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T06%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Land%20Surface%20Temperature%20Retrieval%20Methods%20From%20Landsat-8%20Thermal%20Infrared%20Sensor%20Data&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Jimenez-Munoz,%20Juan%20C.&rft.date=2014-10-01&rft.volume=11&rft.issue=10&rft.spage=1840&rft.epage=1843&rft.pages=1840-1843&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2014.2312032&rft_dat=%3Cproquest_RIE%3E3387984811%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1549541862&rft_id=info:pmid/&rft_ieee_id=6784508&rfr_iscdi=true |