Urban Mapping Using Coarse SAR and Optical Data: Outcome of the 2007 GRSS Data Fusion Contest
The 2007 data fusion contest that was organized by the IEEE Geoscience and Remote Sensing Data Fusion Technical Committee was dealing with the extraction of a land use/land cover maps in and around an urban area, exploiting multitemporal and multisource coarse-resolution data sets. In particular, sy...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2008-07, Vol.5 (3), p.331-335 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 335 |
---|---|
container_issue | 3 |
container_start_page | 331 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 5 |
creator | Pacifici, F. Del Frate, F. Emery, W.J. Gamba, P. Chanussot, J. |
description | The 2007 data fusion contest that was organized by the IEEE Geoscience and Remote Sensing Data Fusion Technical Committee was dealing with the extraction of a land use/land cover maps in and around an urban area, exploiting multitemporal and multisource coarse-resolution data sets. In particular, synthetic aperture radar and optical data from satellite sensors were considered. Excellent indicators for mapping accuracy were obtained by the top teams. The best algorithm is based on a neural classification enhanced by preprocessing and postprocessing steps. |
doi_str_mv | 10.1109/LGRS.2008.915939 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2008_915939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4476092</ieee_id><sourcerecordid>2328865121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-1df6c29d1e4969d8076bf3ec5de0319b18b558ed151e7ed4192b9fc827c1850c3</originalsourceid><addsrcrecordid>eNpdkc1r3DAUxEVpoOmm90IuopeSgzd6tmRLvS2bT3BZyHahlyJk-TnrxWs5lh3Ifx85LjnkIgnpN280DCHfgS0BmLrMbx-2y5gxuVQgVKI-kVMQQkZMZPB5OnMRCSX_fiFfvT8wFnMps1Pyb9cXpqW_TdfV7SPd-WldO9N7pNvVAzVtSTfdUFvT0CszmF90Mw7WHZG6ig57pMEyo8F7-_ZMb0ZfuzZMaAf0wxk5qUzj8dv_fUF2N9d_1ndRvrm9X6_yyPKUDxGUVWpjVQJylapSsiwtqgStKJEloAqQRYiCJQjADEsOKi5UZWWcWZCC2WRBLua5e9Porq-Ppn_RztT6bpXr6Y6xJOQV8AyB_TmzXe-exvBJfay9xaYxLbrRaylZyiUExYL8-EAe3Ni3IYiWaRKnCXAZIDZDtnfe91i9-wPTUzN6akZPzei5mSA5nyU1Ir7jnGcpU3HyCr6jhfg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863263148</pqid></control><display><type>article</type><title>Urban Mapping Using Coarse SAR and Optical Data: Outcome of the 2007 GRSS Data Fusion Contest</title><source>IEEE Electronic Library (IEL)</source><creator>Pacifici, F. ; Del Frate, F. ; Emery, W.J. ; Gamba, P. ; Chanussot, J.</creator><creatorcontrib>Pacifici, F. ; Del Frate, F. ; Emery, W.J. ; Gamba, P. ; Chanussot, J.</creatorcontrib><description>The 2007 data fusion contest that was organized by the IEEE Geoscience and Remote Sensing Data Fusion Technical Committee was dealing with the extraction of a land use/land cover maps in and around an urban area, exploiting multitemporal and multisource coarse-resolution data sets. In particular, synthetic aperture radar and optical data from satellite sensors were considered. Excellent indicators for mapping accuracy were obtained by the top teams. The best algorithm is based on a neural classification enhanced by preprocessing and postprocessing steps.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2008.915939</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive optics ; Algorithms ; Computer Science ; Data fusion ; Data integration ; Data mining ; Engineering Sciences ; European Remote Sensing satellite (ERS) ; image classification ; Image Processing ; Landsat ; Mapping ; neural networks (NNs) ; Optical scattering ; Optical sensors ; Optical surface waves ; Preprocessing ; Remote monitoring ; Remote sensing ; Satellites ; Sensor fusion ; Sensor phenomena and characterization ; Signal and Image processing ; Synthetic aperture radar ; Urban areas ; urban remote sensing</subject><ispartof>IEEE geoscience and remote sensing letters, 2008-07, Vol.5 (3), p.331-335</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-1df6c29d1e4969d8076bf3ec5de0319b18b558ed151e7ed4192b9fc827c1850c3</citedby><cites>FETCH-LOGICAL-c464t-1df6c29d1e4969d8076bf3ec5de0319b18b558ed151e7ed4192b9fc827c1850c3</cites><orcidid>0000-0003-4817-2875 ; 0000-0002-9576-6337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4476092$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4476092$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-00348851$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pacifici, F.</creatorcontrib><creatorcontrib>Del Frate, F.</creatorcontrib><creatorcontrib>Emery, W.J.</creatorcontrib><creatorcontrib>Gamba, P.</creatorcontrib><creatorcontrib>Chanussot, J.</creatorcontrib><title>Urban Mapping Using Coarse SAR and Optical Data: Outcome of the 2007 GRSS Data Fusion Contest</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>The 2007 data fusion contest that was organized by the IEEE Geoscience and Remote Sensing Data Fusion Technical Committee was dealing with the extraction of a land use/land cover maps in and around an urban area, exploiting multitemporal and multisource coarse-resolution data sets. In particular, synthetic aperture radar and optical data from satellite sensors were considered. Excellent indicators for mapping accuracy were obtained by the top teams. The best algorithm is based on a neural classification enhanced by preprocessing and postprocessing steps.</description><subject>Adaptive optics</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Data fusion</subject><subject>Data integration</subject><subject>Data mining</subject><subject>Engineering Sciences</subject><subject>European Remote Sensing satellite (ERS)</subject><subject>image classification</subject><subject>Image Processing</subject><subject>Landsat</subject><subject>Mapping</subject><subject>neural networks (NNs)</subject><subject>Optical scattering</subject><subject>Optical sensors</subject><subject>Optical surface waves</subject><subject>Preprocessing</subject><subject>Remote monitoring</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Sensor fusion</subject><subject>Sensor phenomena and characterization</subject><subject>Signal and Image processing</subject><subject>Synthetic aperture radar</subject><subject>Urban areas</subject><subject>urban remote sensing</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1r3DAUxEVpoOmm90IuopeSgzd6tmRLvS2bT3BZyHahlyJk-TnrxWs5lh3Ifx85LjnkIgnpN280DCHfgS0BmLrMbx-2y5gxuVQgVKI-kVMQQkZMZPB5OnMRCSX_fiFfvT8wFnMps1Pyb9cXpqW_TdfV7SPd-WldO9N7pNvVAzVtSTfdUFvT0CszmF90Mw7WHZG6ig57pMEyo8F7-_ZMb0ZfuzZMaAf0wxk5qUzj8dv_fUF2N9d_1ndRvrm9X6_yyPKUDxGUVWpjVQJylapSsiwtqgStKJEloAqQRYiCJQjADEsOKi5UZWWcWZCC2WRBLua5e9Porq-Ppn_RztT6bpXr6Y6xJOQV8AyB_TmzXe-exvBJfay9xaYxLbrRaylZyiUExYL8-EAe3Ni3IYiWaRKnCXAZIDZDtnfe91i9-wPTUzN6akZPzei5mSA5nyU1Ir7jnGcpU3HyCr6jhfg</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Pacifici, F.</creator><creator>Del Frate, F.</creator><creator>Emery, W.J.</creator><creator>Gamba, P.</creator><creator>Chanussot, J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>IEEE - Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4817-2875</orcidid><orcidid>https://orcid.org/0000-0002-9576-6337</orcidid></search><sort><creationdate>20080701</creationdate><title>Urban Mapping Using Coarse SAR and Optical Data: Outcome of the 2007 GRSS Data Fusion Contest</title><author>Pacifici, F. ; Del Frate, F. ; Emery, W.J. ; Gamba, P. ; Chanussot, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-1df6c29d1e4969d8076bf3ec5de0319b18b558ed151e7ed4192b9fc827c1850c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptive optics</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Data fusion</topic><topic>Data integration</topic><topic>Data mining</topic><topic>Engineering Sciences</topic><topic>European Remote Sensing satellite (ERS)</topic><topic>image classification</topic><topic>Image Processing</topic><topic>Landsat</topic><topic>Mapping</topic><topic>neural networks (NNs)</topic><topic>Optical scattering</topic><topic>Optical sensors</topic><topic>Optical surface waves</topic><topic>Preprocessing</topic><topic>Remote monitoring</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Sensor fusion</topic><topic>Sensor phenomena and characterization</topic><topic>Signal and Image processing</topic><topic>Synthetic aperture radar</topic><topic>Urban areas</topic><topic>urban remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pacifici, F.</creatorcontrib><creatorcontrib>Del Frate, F.</creatorcontrib><creatorcontrib>Emery, W.J.</creatorcontrib><creatorcontrib>Gamba, P.</creatorcontrib><creatorcontrib>Chanussot, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pacifici, F.</au><au>Del Frate, F.</au><au>Emery, W.J.</au><au>Gamba, P.</au><au>Chanussot, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Urban Mapping Using Coarse SAR and Optical Data: Outcome of the 2007 GRSS Data Fusion Contest</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2008-07-01</date><risdate>2008</risdate><volume>5</volume><issue>3</issue><spage>331</spage><epage>335</epage><pages>331-335</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>The 2007 data fusion contest that was organized by the IEEE Geoscience and Remote Sensing Data Fusion Technical Committee was dealing with the extraction of a land use/land cover maps in and around an urban area, exploiting multitemporal and multisource coarse-resolution data sets. In particular, synthetic aperture radar and optical data from satellite sensors were considered. Excellent indicators for mapping accuracy were obtained by the top teams. The best algorithm is based on a neural classification enhanced by preprocessing and postprocessing steps.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2008.915939</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4817-2875</orcidid><orcidid>https://orcid.org/0000-0002-9576-6337</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2008-07, Vol.5 (3), p.331-335 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2008_915939 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive optics Algorithms Computer Science Data fusion Data integration Data mining Engineering Sciences European Remote Sensing satellite (ERS) image classification Image Processing Landsat Mapping neural networks (NNs) Optical scattering Optical sensors Optical surface waves Preprocessing Remote monitoring Remote sensing Satellites Sensor fusion Sensor phenomena and characterization Signal and Image processing Synthetic aperture radar Urban areas urban remote sensing |
title | Urban Mapping Using Coarse SAR and Optical Data: Outcome of the 2007 GRSS Data Fusion Contest |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Urban%20Mapping%20Using%20Coarse%20SAR%20and%20Optical%20Data:%20Outcome%20of%20the%202007%20GRSS%20Data%20Fusion%20Contest&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Pacifici,%20F.&rft.date=2008-07-01&rft.volume=5&rft.issue=3&rft.spage=331&rft.epage=335&rft.pages=331-335&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2008.915939&rft_dat=%3Cproquest_RIE%3E2328865121%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863263148&rft_id=info:pmid/&rft_ieee_id=4476092&rfr_iscdi=true |