Urban Mapping Using Coarse SAR and Optical Data: Outcome of the 2007 GRSS Data Fusion Contest

The 2007 data fusion contest that was organized by the IEEE Geoscience and Remote Sensing Data Fusion Technical Committee was dealing with the extraction of a land use/land cover maps in and around an urban area, exploiting multitemporal and multisource coarse-resolution data sets. In particular, sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2008-07, Vol.5 (3), p.331-335
Hauptverfasser: Pacifici, F., Del Frate, F., Emery, W.J., Gamba, P., Chanussot, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 335
container_issue 3
container_start_page 331
container_title IEEE geoscience and remote sensing letters
container_volume 5
creator Pacifici, F.
Del Frate, F.
Emery, W.J.
Gamba, P.
Chanussot, J.
description The 2007 data fusion contest that was organized by the IEEE Geoscience and Remote Sensing Data Fusion Technical Committee was dealing with the extraction of a land use/land cover maps in and around an urban area, exploiting multitemporal and multisource coarse-resolution data sets. In particular, synthetic aperture radar and optical data from satellite sensors were considered. Excellent indicators for mapping accuracy were obtained by the top teams. The best algorithm is based on a neural classification enhanced by preprocessing and postprocessing steps.
doi_str_mv 10.1109/LGRS.2008.915939
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2008_915939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4476092</ieee_id><sourcerecordid>2328865121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-1df6c29d1e4969d8076bf3ec5de0319b18b558ed151e7ed4192b9fc827c1850c3</originalsourceid><addsrcrecordid>eNpdkc1r3DAUxEVpoOmm90IuopeSgzd6tmRLvS2bT3BZyHahlyJk-TnrxWs5lh3Ifx85LjnkIgnpN280DCHfgS0BmLrMbx-2y5gxuVQgVKI-kVMQQkZMZPB5OnMRCSX_fiFfvT8wFnMps1Pyb9cXpqW_TdfV7SPd-WldO9N7pNvVAzVtSTfdUFvT0CszmF90Mw7WHZG6ig57pMEyo8F7-_ZMb0ZfuzZMaAf0wxk5qUzj8dv_fUF2N9d_1ndRvrm9X6_yyPKUDxGUVWpjVQJylapSsiwtqgStKJEloAqQRYiCJQjADEsOKi5UZWWcWZCC2WRBLua5e9Porq-Ppn_RztT6bpXr6Y6xJOQV8AyB_TmzXe-exvBJfay9xaYxLbrRaylZyiUExYL8-EAe3Ni3IYiWaRKnCXAZIDZDtnfe91i9-wPTUzN6akZPzei5mSA5nyU1Ir7jnGcpU3HyCr6jhfg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863263148</pqid></control><display><type>article</type><title>Urban Mapping Using Coarse SAR and Optical Data: Outcome of the 2007 GRSS Data Fusion Contest</title><source>IEEE Electronic Library (IEL)</source><creator>Pacifici, F. ; Del Frate, F. ; Emery, W.J. ; Gamba, P. ; Chanussot, J.</creator><creatorcontrib>Pacifici, F. ; Del Frate, F. ; Emery, W.J. ; Gamba, P. ; Chanussot, J.</creatorcontrib><description>The 2007 data fusion contest that was organized by the IEEE Geoscience and Remote Sensing Data Fusion Technical Committee was dealing with the extraction of a land use/land cover maps in and around an urban area, exploiting multitemporal and multisource coarse-resolution data sets. In particular, synthetic aperture radar and optical data from satellite sensors were considered. Excellent indicators for mapping accuracy were obtained by the top teams. The best algorithm is based on a neural classification enhanced by preprocessing and postprocessing steps.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2008.915939</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive optics ; Algorithms ; Computer Science ; Data fusion ; Data integration ; Data mining ; Engineering Sciences ; European Remote Sensing satellite (ERS) ; image classification ; Image Processing ; Landsat ; Mapping ; neural networks (NNs) ; Optical scattering ; Optical sensors ; Optical surface waves ; Preprocessing ; Remote monitoring ; Remote sensing ; Satellites ; Sensor fusion ; Sensor phenomena and characterization ; Signal and Image processing ; Synthetic aperture radar ; Urban areas ; urban remote sensing</subject><ispartof>IEEE geoscience and remote sensing letters, 2008-07, Vol.5 (3), p.331-335</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-1df6c29d1e4969d8076bf3ec5de0319b18b558ed151e7ed4192b9fc827c1850c3</citedby><cites>FETCH-LOGICAL-c464t-1df6c29d1e4969d8076bf3ec5de0319b18b558ed151e7ed4192b9fc827c1850c3</cites><orcidid>0000-0003-4817-2875 ; 0000-0002-9576-6337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4476092$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4476092$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-00348851$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pacifici, F.</creatorcontrib><creatorcontrib>Del Frate, F.</creatorcontrib><creatorcontrib>Emery, W.J.</creatorcontrib><creatorcontrib>Gamba, P.</creatorcontrib><creatorcontrib>Chanussot, J.</creatorcontrib><title>Urban Mapping Using Coarse SAR and Optical Data: Outcome of the 2007 GRSS Data Fusion Contest</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>The 2007 data fusion contest that was organized by the IEEE Geoscience and Remote Sensing Data Fusion Technical Committee was dealing with the extraction of a land use/land cover maps in and around an urban area, exploiting multitemporal and multisource coarse-resolution data sets. In particular, synthetic aperture radar and optical data from satellite sensors were considered. Excellent indicators for mapping accuracy were obtained by the top teams. The best algorithm is based on a neural classification enhanced by preprocessing and postprocessing steps.</description><subject>Adaptive optics</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Data fusion</subject><subject>Data integration</subject><subject>Data mining</subject><subject>Engineering Sciences</subject><subject>European Remote Sensing satellite (ERS)</subject><subject>image classification</subject><subject>Image Processing</subject><subject>Landsat</subject><subject>Mapping</subject><subject>neural networks (NNs)</subject><subject>Optical scattering</subject><subject>Optical sensors</subject><subject>Optical surface waves</subject><subject>Preprocessing</subject><subject>Remote monitoring</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Sensor fusion</subject><subject>Sensor phenomena and characterization</subject><subject>Signal and Image processing</subject><subject>Synthetic aperture radar</subject><subject>Urban areas</subject><subject>urban remote sensing</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1r3DAUxEVpoOmm90IuopeSgzd6tmRLvS2bT3BZyHahlyJk-TnrxWs5lh3Ifx85LjnkIgnpN280DCHfgS0BmLrMbx-2y5gxuVQgVKI-kVMQQkZMZPB5OnMRCSX_fiFfvT8wFnMps1Pyb9cXpqW_TdfV7SPd-WldO9N7pNvVAzVtSTfdUFvT0CszmF90Mw7WHZG6ig57pMEyo8F7-_ZMb0ZfuzZMaAf0wxk5qUzj8dv_fUF2N9d_1ndRvrm9X6_yyPKUDxGUVWpjVQJylapSsiwtqgStKJEloAqQRYiCJQjADEsOKi5UZWWcWZCC2WRBLua5e9Porq-Ppn_RztT6bpXr6Y6xJOQV8AyB_TmzXe-exvBJfay9xaYxLbrRaylZyiUExYL8-EAe3Ni3IYiWaRKnCXAZIDZDtnfe91i9-wPTUzN6akZPzei5mSA5nyU1Ir7jnGcpU3HyCr6jhfg</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Pacifici, F.</creator><creator>Del Frate, F.</creator><creator>Emery, W.J.</creator><creator>Gamba, P.</creator><creator>Chanussot, J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>IEEE - Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4817-2875</orcidid><orcidid>https://orcid.org/0000-0002-9576-6337</orcidid></search><sort><creationdate>20080701</creationdate><title>Urban Mapping Using Coarse SAR and Optical Data: Outcome of the 2007 GRSS Data Fusion Contest</title><author>Pacifici, F. ; Del Frate, F. ; Emery, W.J. ; Gamba, P. ; Chanussot, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-1df6c29d1e4969d8076bf3ec5de0319b18b558ed151e7ed4192b9fc827c1850c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptive optics</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Data fusion</topic><topic>Data integration</topic><topic>Data mining</topic><topic>Engineering Sciences</topic><topic>European Remote Sensing satellite (ERS)</topic><topic>image classification</topic><topic>Image Processing</topic><topic>Landsat</topic><topic>Mapping</topic><topic>neural networks (NNs)</topic><topic>Optical scattering</topic><topic>Optical sensors</topic><topic>Optical surface waves</topic><topic>Preprocessing</topic><topic>Remote monitoring</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Sensor fusion</topic><topic>Sensor phenomena and characterization</topic><topic>Signal and Image processing</topic><topic>Synthetic aperture radar</topic><topic>Urban areas</topic><topic>urban remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pacifici, F.</creatorcontrib><creatorcontrib>Del Frate, F.</creatorcontrib><creatorcontrib>Emery, W.J.</creatorcontrib><creatorcontrib>Gamba, P.</creatorcontrib><creatorcontrib>Chanussot, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pacifici, F.</au><au>Del Frate, F.</au><au>Emery, W.J.</au><au>Gamba, P.</au><au>Chanussot, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Urban Mapping Using Coarse SAR and Optical Data: Outcome of the 2007 GRSS Data Fusion Contest</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2008-07-01</date><risdate>2008</risdate><volume>5</volume><issue>3</issue><spage>331</spage><epage>335</epage><pages>331-335</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>The 2007 data fusion contest that was organized by the IEEE Geoscience and Remote Sensing Data Fusion Technical Committee was dealing with the extraction of a land use/land cover maps in and around an urban area, exploiting multitemporal and multisource coarse-resolution data sets. In particular, synthetic aperture radar and optical data from satellite sensors were considered. Excellent indicators for mapping accuracy were obtained by the top teams. The best algorithm is based on a neural classification enhanced by preprocessing and postprocessing steps.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2008.915939</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4817-2875</orcidid><orcidid>https://orcid.org/0000-0002-9576-6337</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2008-07, Vol.5 (3), p.331-335
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2008_915939
source IEEE Electronic Library (IEL)
subjects Adaptive optics
Algorithms
Computer Science
Data fusion
Data integration
Data mining
Engineering Sciences
European Remote Sensing satellite (ERS)
image classification
Image Processing
Landsat
Mapping
neural networks (NNs)
Optical scattering
Optical sensors
Optical surface waves
Preprocessing
Remote monitoring
Remote sensing
Satellites
Sensor fusion
Sensor phenomena and characterization
Signal and Image processing
Synthetic aperture radar
Urban areas
urban remote sensing
title Urban Mapping Using Coarse SAR and Optical Data: Outcome of the 2007 GRSS Data Fusion Contest
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Urban%20Mapping%20Using%20Coarse%20SAR%20and%20Optical%20Data:%20Outcome%20of%20the%202007%20GRSS%20Data%20Fusion%20Contest&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Pacifici,%20F.&rft.date=2008-07-01&rft.volume=5&rft.issue=3&rft.spage=331&rft.epage=335&rft.pages=331-335&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2008.915939&rft_dat=%3Cproquest_RIE%3E2328865121%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863263148&rft_id=info:pmid/&rft_ieee_id=4476092&rfr_iscdi=true