Detection of Sulfur Dioxide in AIRS Data With the Wavelet Packet Subspace
A generalized method for trace-gas detection in hyperspectral data using the wavelet packet transform is being developed. This new method decomposes the input signal using a wavelet packet transform. A best basis that is optimized for the target signature is selected for pattern matching. The wavele...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2009-01, Vol.6 (1), p.137-141 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 141 |
---|---|
container_issue | 1 |
container_start_page | 137 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 6 |
creator | Salvador, M.Z. Resmini, R.G. Gomez, R.B. |
description | A generalized method for trace-gas detection in hyperspectral data using the wavelet packet transform is being developed. This new method decomposes the input signal using a wavelet packet transform. A best basis that is optimized for the target signature is selected for pattern matching. The wavelet packet transform, an extension of the wavelet transform, fully decomposes a signal into a library of wavelet packet bases. The application of the wavelet packet transform to hyperspectral data for the detection of trace gases takes advantage of the ability of the wavelet transform to locate spectral features in both scale and location. By analyzing the wavelet packet tree of a specific target gas, the nodes of the tree that represent an orthogonal best basis are selected. The best basis represents the significant spectral features of that gas. This is then used to identify pixels in the scene using existing matching algorithms such as spectral angle. Using data from NASA's Advanced Infrared Sounder, this method is used to detect sulfur dioxide. Initial results demonstrate a promising wavelet-packet-subspace technique for trace-gas-detection applications. |
doi_str_mv | 10.1109/LGRS.2008.2009645 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2008_2009645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4721619</ieee_id><sourcerecordid>880662823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-fd3924b963e317e258fc6435292c65d930a3e6381d69e93cdebfebb7b1e142953</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKs_QLwsXjyl7nd2j6XVWigojVJvy2YzoVvTpmYT0X9vQosHL_PO4XmH4Ymia4JHhGB9v5gt0xHFWPVDSy5OogERQsVYJOS037mIhVbv59FFCBuMKVcqGUTzKTTgGl_tUFWgtC2LtkZTX337HJDfofF8maKpbSxa-WaNmjWglf2CEhr0Yt1HF2mbhb11cBmdFbYMcHXMYfT2-PA6eYoXz7P5ZLyIHaO8iYucacozLRkwkgAVqnCSM0E1dVLkmmHLQDJFcqlBM5dDVkCWJRkBwqkWbBjdHe7u6-qzhdCYrQ8OytLuoGqDUQpLSRVlHXn7j9xUbb3rnjNKkkQwrWkHkQPk6iqEGgqzr_3W1j-GYNOrNb1a06s1R7Vd5-bQ8QDwx_OEEkk0-wVYpXLq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861753992</pqid></control><display><type>article</type><title>Detection of Sulfur Dioxide in AIRS Data With the Wavelet Packet Subspace</title><source>IEEE Electronic Library (IEL)</source><creator>Salvador, M.Z. ; Resmini, R.G. ; Gomez, R.B.</creator><creatorcontrib>Salvador, M.Z. ; Resmini, R.G. ; Gomez, R.B.</creatorcontrib><description>A generalized method for trace-gas detection in hyperspectral data using the wavelet packet transform is being developed. This new method decomposes the input signal using a wavelet packet transform. A best basis that is optimized for the target signature is selected for pattern matching. The wavelet packet transform, an extension of the wavelet transform, fully decomposes a signal into a library of wavelet packet bases. The application of the wavelet packet transform to hyperspectral data for the detection of trace gases takes advantage of the ability of the wavelet transform to locate spectral features in both scale and location. By analyzing the wavelet packet tree of a specific target gas, the nodes of the tree that represent an orthogonal best basis are selected. The best basis represents the significant spectral features of that gas. This is then used to identify pixels in the scene using existing matching algorithms such as spectral angle. Using data from NASA's Advanced Infrared Sounder, this method is used to detect sulfur dioxide. Initial results demonstrate a promising wavelet-packet-subspace technique for trace-gas-detection applications.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2008.2009645</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Advanced Infrared Sounder (AIRS) ; Decomposition ; Gas detectors ; Gases ; hyperspectral ; Hyperspectral imaging ; Infrared detectors ; Layout ; Libraries ; Matching ; Pattern matching ; Spectra ; Studies ; Sulfur dioxide ; Transforms ; Trees ; Wavelet ; Wavelet analysis ; wavelet packet ; wavelet packet subspace (WPS) ; Wavelet packets ; wavelet transform ; Wavelet transforms</subject><ispartof>IEEE geoscience and remote sensing letters, 2009-01, Vol.6 (1), p.137-141</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-fd3924b963e317e258fc6435292c65d930a3e6381d69e93cdebfebb7b1e142953</citedby><cites>FETCH-LOGICAL-c324t-fd3924b963e317e258fc6435292c65d930a3e6381d69e93cdebfebb7b1e142953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4721619$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4721619$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Salvador, M.Z.</creatorcontrib><creatorcontrib>Resmini, R.G.</creatorcontrib><creatorcontrib>Gomez, R.B.</creatorcontrib><title>Detection of Sulfur Dioxide in AIRS Data With the Wavelet Packet Subspace</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>A generalized method for trace-gas detection in hyperspectral data using the wavelet packet transform is being developed. This new method decomposes the input signal using a wavelet packet transform. A best basis that is optimized for the target signature is selected for pattern matching. The wavelet packet transform, an extension of the wavelet transform, fully decomposes a signal into a library of wavelet packet bases. The application of the wavelet packet transform to hyperspectral data for the detection of trace gases takes advantage of the ability of the wavelet transform to locate spectral features in both scale and location. By analyzing the wavelet packet tree of a specific target gas, the nodes of the tree that represent an orthogonal best basis are selected. The best basis represents the significant spectral features of that gas. This is then used to identify pixels in the scene using existing matching algorithms such as spectral angle. Using data from NASA's Advanced Infrared Sounder, this method is used to detect sulfur dioxide. Initial results demonstrate a promising wavelet-packet-subspace technique for trace-gas-detection applications.</description><subject>Advanced Infrared Sounder (AIRS)</subject><subject>Decomposition</subject><subject>Gas detectors</subject><subject>Gases</subject><subject>hyperspectral</subject><subject>Hyperspectral imaging</subject><subject>Infrared detectors</subject><subject>Layout</subject><subject>Libraries</subject><subject>Matching</subject><subject>Pattern matching</subject><subject>Spectra</subject><subject>Studies</subject><subject>Sulfur dioxide</subject><subject>Transforms</subject><subject>Trees</subject><subject>Wavelet</subject><subject>Wavelet analysis</subject><subject>wavelet packet</subject><subject>wavelet packet subspace (WPS)</subject><subject>Wavelet packets</subject><subject>wavelet transform</subject><subject>Wavelet transforms</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKs_QLwsXjyl7nd2j6XVWigojVJvy2YzoVvTpmYT0X9vQosHL_PO4XmH4Ymia4JHhGB9v5gt0xHFWPVDSy5OogERQsVYJOS037mIhVbv59FFCBuMKVcqGUTzKTTgGl_tUFWgtC2LtkZTX337HJDfofF8maKpbSxa-WaNmjWglf2CEhr0Yt1HF2mbhb11cBmdFbYMcHXMYfT2-PA6eYoXz7P5ZLyIHaO8iYucacozLRkwkgAVqnCSM0E1dVLkmmHLQDJFcqlBM5dDVkCWJRkBwqkWbBjdHe7u6-qzhdCYrQ8OytLuoGqDUQpLSRVlHXn7j9xUbb3rnjNKkkQwrWkHkQPk6iqEGgqzr_3W1j-GYNOrNb1a06s1R7Vd5-bQ8QDwx_OEEkk0-wVYpXLq</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Salvador, M.Z.</creator><creator>Resmini, R.G.</creator><creator>Gomez, R.B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>200901</creationdate><title>Detection of Sulfur Dioxide in AIRS Data With the Wavelet Packet Subspace</title><author>Salvador, M.Z. ; Resmini, R.G. ; Gomez, R.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-fd3924b963e317e258fc6435292c65d930a3e6381d69e93cdebfebb7b1e142953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Advanced Infrared Sounder (AIRS)</topic><topic>Decomposition</topic><topic>Gas detectors</topic><topic>Gases</topic><topic>hyperspectral</topic><topic>Hyperspectral imaging</topic><topic>Infrared detectors</topic><topic>Layout</topic><topic>Libraries</topic><topic>Matching</topic><topic>Pattern matching</topic><topic>Spectra</topic><topic>Studies</topic><topic>Sulfur dioxide</topic><topic>Transforms</topic><topic>Trees</topic><topic>Wavelet</topic><topic>Wavelet analysis</topic><topic>wavelet packet</topic><topic>wavelet packet subspace (WPS)</topic><topic>Wavelet packets</topic><topic>wavelet transform</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salvador, M.Z.</creatorcontrib><creatorcontrib>Resmini, R.G.</creatorcontrib><creatorcontrib>Gomez, R.B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Salvador, M.Z.</au><au>Resmini, R.G.</au><au>Gomez, R.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Sulfur Dioxide in AIRS Data With the Wavelet Packet Subspace</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2009-01</date><risdate>2009</risdate><volume>6</volume><issue>1</issue><spage>137</spage><epage>141</epage><pages>137-141</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>A generalized method for trace-gas detection in hyperspectral data using the wavelet packet transform is being developed. This new method decomposes the input signal using a wavelet packet transform. A best basis that is optimized for the target signature is selected for pattern matching. The wavelet packet transform, an extension of the wavelet transform, fully decomposes a signal into a library of wavelet packet bases. The application of the wavelet packet transform to hyperspectral data for the detection of trace gases takes advantage of the ability of the wavelet transform to locate spectral features in both scale and location. By analyzing the wavelet packet tree of a specific target gas, the nodes of the tree that represent an orthogonal best basis are selected. The best basis represents the significant spectral features of that gas. This is then used to identify pixels in the scene using existing matching algorithms such as spectral angle. Using data from NASA's Advanced Infrared Sounder, this method is used to detect sulfur dioxide. Initial results demonstrate a promising wavelet-packet-subspace technique for trace-gas-detection applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2008.2009645</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2009-01, Vol.6 (1), p.137-141 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2008_2009645 |
source | IEEE Electronic Library (IEL) |
subjects | Advanced Infrared Sounder (AIRS) Decomposition Gas detectors Gases hyperspectral Hyperspectral imaging Infrared detectors Layout Libraries Matching Pattern matching Spectra Studies Sulfur dioxide Transforms Trees Wavelet Wavelet analysis wavelet packet wavelet packet subspace (WPS) Wavelet packets wavelet transform Wavelet transforms |
title | Detection of Sulfur Dioxide in AIRS Data With the Wavelet Packet Subspace |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Sulfur%20Dioxide%20in%20AIRS%20Data%20With%20the%20Wavelet%20Packet%20Subspace&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Salvador,%20M.Z.&rft.date=2009-01&rft.volume=6&rft.issue=1&rft.spage=137&rft.epage=141&rft.pages=137-141&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2008.2009645&rft_dat=%3Cproquest_RIE%3E880662823%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861753992&rft_id=info:pmid/&rft_ieee_id=4721619&rfr_iscdi=true |