Classification and Extraction of Spatial Features in Urban Areas Using High-Resolution Multispectral Imagery

Classification and extraction of spatial features are investigated in urban areas from high spatial resolution multispectral imagery. The proposed approach consists of three steps. First, as an extension of our previous work [pixel shape index (PSI)], a structural feature set (SFS) is proposed to ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2007-04, Vol.4 (2), p.260-264
Hauptverfasser: Huang, Xin, Zhang, Liangpei, Li, Pingxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue 2
container_start_page 260
container_title IEEE geoscience and remote sensing letters
container_volume 4
creator Huang, Xin
Zhang, Liangpei
Li, Pingxiang
description Classification and extraction of spatial features are investigated in urban areas from high spatial resolution multispectral imagery. The proposed approach consists of three steps. First, as an extension of our previous work [pixel shape index (PSI)], a structural feature set (SFS) is proposed to extract the statistical features of the direction-lines histogram. Second, some methods of dimension reduction, including independent component analysis, decision boundary feature extraction, and the similarity-index feature selection, are implemented for the proposed SFS to reduce information redundancy. Third, four classifiers, the maximum-likelihood classifier, backpropagation neural network, probability neural network based on expectation-maximization training, and support vector machine, are compared to assess SFS and other spatial feature sets. We evaluate the proposed approach on two QuickBird datasets, and the results show that the new set of reduced spatial features has better performance than the existing length-width extraction algorithm and PSI
doi_str_mv 10.1109/LGRS.2006.890540
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2006_890540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4156157</ieee_id><sourcerecordid>903614531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-8b72938777e79c22394e9dc5afd39de4716981248eafb4e6e2b0387ed22bcc913</originalsourceid><addsrcrecordid>eNqF0cuLFDEQB-AgCq6jd8FL8KBeesz7cVyGfcGIsOuAt5BOV49ZMt1j0g3uf296Rzx4WE9JyFdFJT-E3lKyppTYz9ur27s1I0StjSVSkGfojEppGiI1fb7shWykNd9folel3BPChDH6DKVN8qXEPgY_xXHAfujwxa8p-_B4HHt8d6w3PuFL8NOcoeA44F1u_YDPM_iCdyUOe3wd9z-aWyhjmh8Lv8xpiuUIobZK-Obg95AfXqMXvU8F3vxZV2h3efFtc91sv17dbM63TZBMTY1pNbPcaK1B28AYtwJsF6TvO247EJoqa2h9APi-FaCAtaRy6BhrQ7CUr9DHU99jHn_OUCZ3iCVASn6AcS7OEq6okPz_0hiiLNOGV_nhSckFt0bVuVfo05OQasUok1Iv9P0_9H6c81C_xhklbBVMV0ROKOSxlAy9O-Z48PnBUeKW6N0SvVuid6foa8m7U0kEgL9cUKmo1Pw3JYGpwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864979327</pqid></control><display><type>article</type><title>Classification and Extraction of Spatial Features in Urban Areas Using High-Resolution Multispectral Imagery</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Xin ; Zhang, Liangpei ; Li, Pingxiang</creator><creatorcontrib>Huang, Xin ; Zhang, Liangpei ; Li, Pingxiang</creatorcontrib><description>Classification and extraction of spatial features are investigated in urban areas from high spatial resolution multispectral imagery. The proposed approach consists of three steps. First, as an extension of our previous work [pixel shape index (PSI)], a structural feature set (SFS) is proposed to extract the statistical features of the direction-lines histogram. Second, some methods of dimension reduction, including independent component analysis, decision boundary feature extraction, and the similarity-index feature selection, are implemented for the proposed SFS to reduce information redundancy. Third, four classifiers, the maximum-likelihood classifier, backpropagation neural network, probability neural network based on expectation-maximization training, and support vector machine, are compared to assess SFS and other spatial feature sets. We evaluate the proposed approach on two QuickBird datasets, and the results show that the new set of reduced spatial features has better performance than the existing length-width extraction algorithm and PSI</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2006.890540</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Backpropagation ; Classification ; Classifiers ; Data mining ; Extraction ; Feature extraction ; feature selection ; highspatial resolution multispectral (HSRM) imagery ; Histograms ; Imagery ; Independent component analysis ; Multispectral imaging ; Neural networks ; Redundancy ; Shape ; spatial feature set ; Spatial resolution ; Urban areas</subject><ispartof>IEEE geoscience and remote sensing letters, 2007-04, Vol.4 (2), p.260-264</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-8b72938777e79c22394e9dc5afd39de4716981248eafb4e6e2b0387ed22bcc913</citedby><cites>FETCH-LOGICAL-c526t-8b72938777e79c22394e9dc5afd39de4716981248eafb4e6e2b0387ed22bcc913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4156157$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4156157$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Zhang, Liangpei</creatorcontrib><creatorcontrib>Li, Pingxiang</creatorcontrib><title>Classification and Extraction of Spatial Features in Urban Areas Using High-Resolution Multispectral Imagery</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Classification and extraction of spatial features are investigated in urban areas from high spatial resolution multispectral imagery. The proposed approach consists of three steps. First, as an extension of our previous work [pixel shape index (PSI)], a structural feature set (SFS) is proposed to extract the statistical features of the direction-lines histogram. Second, some methods of dimension reduction, including independent component analysis, decision boundary feature extraction, and the similarity-index feature selection, are implemented for the proposed SFS to reduce information redundancy. Third, four classifiers, the maximum-likelihood classifier, backpropagation neural network, probability neural network based on expectation-maximization training, and support vector machine, are compared to assess SFS and other spatial feature sets. We evaluate the proposed approach on two QuickBird datasets, and the results show that the new set of reduced spatial features has better performance than the existing length-width extraction algorithm and PSI</description><subject>Algorithms</subject><subject>Backpropagation</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Data mining</subject><subject>Extraction</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>highspatial resolution multispectral (HSRM) imagery</subject><subject>Histograms</subject><subject>Imagery</subject><subject>Independent component analysis</subject><subject>Multispectral imaging</subject><subject>Neural networks</subject><subject>Redundancy</subject><subject>Shape</subject><subject>spatial feature set</subject><subject>Spatial resolution</subject><subject>Urban areas</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0cuLFDEQB-AgCq6jd8FL8KBeesz7cVyGfcGIsOuAt5BOV49ZMt1j0g3uf296Rzx4WE9JyFdFJT-E3lKyppTYz9ur27s1I0StjSVSkGfojEppGiI1fb7shWykNd9folel3BPChDH6DKVN8qXEPgY_xXHAfujwxa8p-_B4HHt8d6w3PuFL8NOcoeA44F1u_YDPM_iCdyUOe3wd9z-aWyhjmh8Lv8xpiuUIobZK-Obg95AfXqMXvU8F3vxZV2h3efFtc91sv17dbM63TZBMTY1pNbPcaK1B28AYtwJsF6TvO247EJoqa2h9APi-FaCAtaRy6BhrQ7CUr9DHU99jHn_OUCZ3iCVASn6AcS7OEq6okPz_0hiiLNOGV_nhSckFt0bVuVfo05OQasUok1Iv9P0_9H6c81C_xhklbBVMV0ROKOSxlAy9O-Z48PnBUeKW6N0SvVuid6foa8m7U0kEgL9cUKmo1Pw3JYGpwQ</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Huang, Xin</creator><creator>Zhang, Liangpei</creator><creator>Li, Pingxiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20070401</creationdate><title>Classification and Extraction of Spatial Features in Urban Areas Using High-Resolution Multispectral Imagery</title><author>Huang, Xin ; Zhang, Liangpei ; Li, Pingxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-8b72938777e79c22394e9dc5afd39de4716981248eafb4e6e2b0387ed22bcc913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Backpropagation</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Data mining</topic><topic>Extraction</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>highspatial resolution multispectral (HSRM) imagery</topic><topic>Histograms</topic><topic>Imagery</topic><topic>Independent component analysis</topic><topic>Multispectral imaging</topic><topic>Neural networks</topic><topic>Redundancy</topic><topic>Shape</topic><topic>spatial feature set</topic><topic>Spatial resolution</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Zhang, Liangpei</creatorcontrib><creatorcontrib>Li, Pingxiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Xin</au><au>Zhang, Liangpei</au><au>Li, Pingxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification and Extraction of Spatial Features in Urban Areas Using High-Resolution Multispectral Imagery</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2007-04-01</date><risdate>2007</risdate><volume>4</volume><issue>2</issue><spage>260</spage><epage>264</epage><pages>260-264</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Classification and extraction of spatial features are investigated in urban areas from high spatial resolution multispectral imagery. The proposed approach consists of three steps. First, as an extension of our previous work [pixel shape index (PSI)], a structural feature set (SFS) is proposed to extract the statistical features of the direction-lines histogram. Second, some methods of dimension reduction, including independent component analysis, decision boundary feature extraction, and the similarity-index feature selection, are implemented for the proposed SFS to reduce information redundancy. Third, four classifiers, the maximum-likelihood classifier, backpropagation neural network, probability neural network based on expectation-maximization training, and support vector machine, are compared to assess SFS and other spatial feature sets. We evaluate the proposed approach on two QuickBird datasets, and the results show that the new set of reduced spatial features has better performance than the existing length-width extraction algorithm and PSI</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2006.890540</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2007-04, Vol.4 (2), p.260-264
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2006_890540
source IEEE Electronic Library (IEL)
subjects Algorithms
Backpropagation
Classification
Classifiers
Data mining
Extraction
Feature extraction
feature selection
highspatial resolution multispectral (HSRM) imagery
Histograms
Imagery
Independent component analysis
Multispectral imaging
Neural networks
Redundancy
Shape
spatial feature set
Spatial resolution
Urban areas
title Classification and Extraction of Spatial Features in Urban Areas Using High-Resolution Multispectral Imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20and%20Extraction%20of%20Spatial%20Features%20in%20Urban%20Areas%20Using%20High-Resolution%20Multispectral%20Imagery&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Huang,%20Xin&rft.date=2007-04-01&rft.volume=4&rft.issue=2&rft.spage=260&rft.epage=264&rft.pages=260-264&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2006.890540&rft_dat=%3Cproquest_RIE%3E903614531%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864979327&rft_id=info:pmid/&rft_ieee_id=4156157&rfr_iscdi=true