A Square-Root-Free Matrix Decomposition Method for Energy-Efficient Least Square Computation on Embedded Systems

QR decomposition (QRD) is used to solve least-squares (LS) problems for a wide range of applications. However, traditional QR decomposition methods, such as Gram-Schmidt (GS), require high computational complexity and nonlinear operations to achieve high throughput, limiting their usage on resource-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE embedded systems letters 2014-12, Vol.6 (4), p.73-76
Hauptverfasser: Fengbo Ren, Chenxin Zhang, Liang Liu, Wenyao Xu, Owall, Viktor, Markovic, Dejan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 4
container_start_page 73
container_title IEEE embedded systems letters
container_volume 6
creator Fengbo Ren
Chenxin Zhang
Liang Liu
Wenyao Xu
Owall, Viktor
Markovic, Dejan
description QR decomposition (QRD) is used to solve least-squares (LS) problems for a wide range of applications. However, traditional QR decomposition methods, such as Gram-Schmidt (GS), require high computational complexity and nonlinear operations to achieve high throughput, limiting their usage on resource-limited platforms. To enable efficient LS computation on embedded systems for real-time applications, this paper presents an alternative decomposition method, called QDRD, which relaxes system requirements while maintaining the same level of performance. Specifically, QDRD eliminates both the square-root operations in the normalization step and the divisions in the subsequent backward substitution. Simulation results show that the accuracy and reliability of factorization matrices can be significantly improved by QDRD, especially when executed on precision-limited platforms. Furthermore, benchmarking results on an embedded platform show that QDRD provides constantly better energy-efficiency and higher throughput than GS-QRD in solving LS problems. Up to 4 and 6.5 times improvement in energy-efficiency and throughput, respectively, can be achieved for small-size problems.
doi_str_mv 10.1109/LES.2014.2350997
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LES_2014_2350997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6882128</ieee_id><sourcerecordid>10_1109_LES_2014_2350997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-4eb11e27f52011f5fb85fce1df37da60da1371630db8723fad72a56b56ba5f573</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOObeBV_yD3TmR9O0j2N2KnQIVp9L2lw0YpeZZOD-ezM3dnzh7uE-B_dB6JaSOaWkum_qds4IzeeMC1JV8gJNaJXzjBSSXp7ngl-jWQhfJJXIpeBigrYL3P7slIfs1bmYrTwAXqvo7S9-gMGNWxdstG6D1xA_ncbGeVxvwH_ss9oYO1jYRNyACvF0By8TtIvqH0qpxx60Bo3bfYgwhht0ZdR3gNmpT9H7qn5bPmXNy-PzctFkAyciZjn0lAKTRqS_qBGmL4UZgGrDpVYF0YpySQtOdF9Kxo3SkilR9ClKGCH5FJHj3cG7EDyYbuvtqPy-o6Q7SOuStO4grTtJS8jdEbEAcF4vypJRVvI_cAtpfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Square-Root-Free Matrix Decomposition Method for Energy-Efficient Least Square Computation on Embedded Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Fengbo Ren ; Chenxin Zhang ; Liang Liu ; Wenyao Xu ; Owall, Viktor ; Markovic, Dejan</creator><creatorcontrib>Fengbo Ren ; Chenxin Zhang ; Liang Liu ; Wenyao Xu ; Owall, Viktor ; Markovic, Dejan</creatorcontrib><description>QR decomposition (QRD) is used to solve least-squares (LS) problems for a wide range of applications. However, traditional QR decomposition methods, such as Gram-Schmidt (GS), require high computational complexity and nonlinear operations to achieve high throughput, limiting their usage on resource-limited platforms. To enable efficient LS computation on embedded systems for real-time applications, this paper presents an alternative decomposition method, called QDRD, which relaxes system requirements while maintaining the same level of performance. Specifically, QDRD eliminates both the square-root operations in the normalization step and the divisions in the subsequent backward substitution. Simulation results show that the accuracy and reliability of factorization matrices can be significantly improved by QDRD, especially when executed on precision-limited platforms. Furthermore, benchmarking results on an embedded platform show that QDRD provides constantly better energy-efficiency and higher throughput than GS-QRD in solving LS problems. Up to 4 and 6.5 times improvement in energy-efficiency and throughput, respectively, can be achieved for small-size problems.</description><identifier>ISSN: 1943-0663</identifier><identifier>EISSN: 1943-0671</identifier><identifier>DOI: 10.1109/LES.2014.2350997</identifier><identifier>CODEN: ESLMAP</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational complexity ; Embedded systems ; Energy efficiency ; Least squares approximations ; least-squares problem ; Matrix decomposition ; matrix factorization ; QR decomposition ; Throughput</subject><ispartof>IEEE embedded systems letters, 2014-12, Vol.6 (4), p.73-76</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-4eb11e27f52011f5fb85fce1df37da60da1371630db8723fad72a56b56ba5f573</citedby><cites>FETCH-LOGICAL-c305t-4eb11e27f52011f5fb85fce1df37da60da1371630db8723fad72a56b56ba5f573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6882128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6882128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fengbo Ren</creatorcontrib><creatorcontrib>Chenxin Zhang</creatorcontrib><creatorcontrib>Liang Liu</creatorcontrib><creatorcontrib>Wenyao Xu</creatorcontrib><creatorcontrib>Owall, Viktor</creatorcontrib><creatorcontrib>Markovic, Dejan</creatorcontrib><title>A Square-Root-Free Matrix Decomposition Method for Energy-Efficient Least Square Computation on Embedded Systems</title><title>IEEE embedded systems letters</title><addtitle>LES</addtitle><description>QR decomposition (QRD) is used to solve least-squares (LS) problems for a wide range of applications. However, traditional QR decomposition methods, such as Gram-Schmidt (GS), require high computational complexity and nonlinear operations to achieve high throughput, limiting their usage on resource-limited platforms. To enable efficient LS computation on embedded systems for real-time applications, this paper presents an alternative decomposition method, called QDRD, which relaxes system requirements while maintaining the same level of performance. Specifically, QDRD eliminates both the square-root operations in the normalization step and the divisions in the subsequent backward substitution. Simulation results show that the accuracy and reliability of factorization matrices can be significantly improved by QDRD, especially when executed on precision-limited platforms. Furthermore, benchmarking results on an embedded platform show that QDRD provides constantly better energy-efficiency and higher throughput than GS-QRD in solving LS problems. Up to 4 and 6.5 times improvement in energy-efficiency and throughput, respectively, can be achieved for small-size problems.</description><subject>Computational complexity</subject><subject>Embedded systems</subject><subject>Energy efficiency</subject><subject>Least squares approximations</subject><subject>least-squares problem</subject><subject>Matrix decomposition</subject><subject>matrix factorization</subject><subject>QR decomposition</subject><subject>Throughput</subject><issn>1943-0663</issn><issn>1943-0671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOObeBV_yD3TmR9O0j2N2KnQIVp9L2lw0YpeZZOD-ezM3dnzh7uE-B_dB6JaSOaWkum_qds4IzeeMC1JV8gJNaJXzjBSSXp7ngl-jWQhfJJXIpeBigrYL3P7slIfs1bmYrTwAXqvo7S9-gMGNWxdstG6D1xA_ncbGeVxvwH_ss9oYO1jYRNyACvF0By8TtIvqH0qpxx60Bo3bfYgwhht0ZdR3gNmpT9H7qn5bPmXNy-PzctFkAyciZjn0lAKTRqS_qBGmL4UZgGrDpVYF0YpySQtOdF9Kxo3SkilR9ClKGCH5FJHj3cG7EDyYbuvtqPy-o6Q7SOuStO4grTtJS8jdEbEAcF4vypJRVvI_cAtpfw</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Fengbo Ren</creator><creator>Chenxin Zhang</creator><creator>Liang Liu</creator><creator>Wenyao Xu</creator><creator>Owall, Viktor</creator><creator>Markovic, Dejan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201412</creationdate><title>A Square-Root-Free Matrix Decomposition Method for Energy-Efficient Least Square Computation on Embedded Systems</title><author>Fengbo Ren ; Chenxin Zhang ; Liang Liu ; Wenyao Xu ; Owall, Viktor ; Markovic, Dejan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-4eb11e27f52011f5fb85fce1df37da60da1371630db8723fad72a56b56ba5f573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computational complexity</topic><topic>Embedded systems</topic><topic>Energy efficiency</topic><topic>Least squares approximations</topic><topic>least-squares problem</topic><topic>Matrix decomposition</topic><topic>matrix factorization</topic><topic>QR decomposition</topic><topic>Throughput</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fengbo Ren</creatorcontrib><creatorcontrib>Chenxin Zhang</creatorcontrib><creatorcontrib>Liang Liu</creatorcontrib><creatorcontrib>Wenyao Xu</creatorcontrib><creatorcontrib>Owall, Viktor</creatorcontrib><creatorcontrib>Markovic, Dejan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE embedded systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fengbo Ren</au><au>Chenxin Zhang</au><au>Liang Liu</au><au>Wenyao Xu</au><au>Owall, Viktor</au><au>Markovic, Dejan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Square-Root-Free Matrix Decomposition Method for Energy-Efficient Least Square Computation on Embedded Systems</atitle><jtitle>IEEE embedded systems letters</jtitle><stitle>LES</stitle><date>2014-12</date><risdate>2014</risdate><volume>6</volume><issue>4</issue><spage>73</spage><epage>76</epage><pages>73-76</pages><issn>1943-0663</issn><eissn>1943-0671</eissn><coden>ESLMAP</coden><abstract>QR decomposition (QRD) is used to solve least-squares (LS) problems for a wide range of applications. However, traditional QR decomposition methods, such as Gram-Schmidt (GS), require high computational complexity and nonlinear operations to achieve high throughput, limiting their usage on resource-limited platforms. To enable efficient LS computation on embedded systems for real-time applications, this paper presents an alternative decomposition method, called QDRD, which relaxes system requirements while maintaining the same level of performance. Specifically, QDRD eliminates both the square-root operations in the normalization step and the divisions in the subsequent backward substitution. Simulation results show that the accuracy and reliability of factorization matrices can be significantly improved by QDRD, especially when executed on precision-limited platforms. Furthermore, benchmarking results on an embedded platform show that QDRD provides constantly better energy-efficiency and higher throughput than GS-QRD in solving LS problems. Up to 4 and 6.5 times improvement in energy-efficiency and throughput, respectively, can be achieved for small-size problems.</abstract><pub>IEEE</pub><doi>10.1109/LES.2014.2350997</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1943-0663
ispartof IEEE embedded systems letters, 2014-12, Vol.6 (4), p.73-76
issn 1943-0663
1943-0671
language eng
recordid cdi_crossref_primary_10_1109_LES_2014_2350997
source IEEE Electronic Library (IEL)
subjects Computational complexity
Embedded systems
Energy efficiency
Least squares approximations
least-squares problem
Matrix decomposition
matrix factorization
QR decomposition
Throughput
title A Square-Root-Free Matrix Decomposition Method for Energy-Efficient Least Square Computation on Embedded Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Square-Root-Free%20Matrix%20Decomposition%20Method%20for%20Energy-Efficient%20Least%20Square%20Computation%20on%20Embedded%20Systems&rft.jtitle=IEEE%20embedded%20systems%20letters&rft.au=Fengbo%20Ren&rft.date=2014-12&rft.volume=6&rft.issue=4&rft.spage=73&rft.epage=76&rft.pages=73-76&rft.issn=1943-0663&rft.eissn=1943-0671&rft.coden=ESLMAP&rft_id=info:doi/10.1109/LES.2014.2350997&rft_dat=%3Ccrossref_RIE%3E10_1109_LES_2014_2350997%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6882128&rfr_iscdi=true