A Square-Root-Free Matrix Decomposition Method for Energy-Efficient Least Square Computation on Embedded Systems
QR decomposition (QRD) is used to solve least-squares (LS) problems for a wide range of applications. However, traditional QR decomposition methods, such as Gram-Schmidt (GS), require high computational complexity and nonlinear operations to achieve high throughput, limiting their usage on resource-...
Gespeichert in:
Veröffentlicht in: | IEEE embedded systems letters 2014-12, Vol.6 (4), p.73-76 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | 4 |
container_start_page | 73 |
container_title | IEEE embedded systems letters |
container_volume | 6 |
creator | Fengbo Ren Chenxin Zhang Liang Liu Wenyao Xu Owall, Viktor Markovic, Dejan |
description | QR decomposition (QRD) is used to solve least-squares (LS) problems for a wide range of applications. However, traditional QR decomposition methods, such as Gram-Schmidt (GS), require high computational complexity and nonlinear operations to achieve high throughput, limiting their usage on resource-limited platforms. To enable efficient LS computation on embedded systems for real-time applications, this paper presents an alternative decomposition method, called QDRD, which relaxes system requirements while maintaining the same level of performance. Specifically, QDRD eliminates both the square-root operations in the normalization step and the divisions in the subsequent backward substitution. Simulation results show that the accuracy and reliability of factorization matrices can be significantly improved by QDRD, especially when executed on precision-limited platforms. Furthermore, benchmarking results on an embedded platform show that QDRD provides constantly better energy-efficiency and higher throughput than GS-QRD in solving LS problems. Up to 4 and 6.5 times improvement in energy-efficiency and throughput, respectively, can be achieved for small-size problems. |
doi_str_mv | 10.1109/LES.2014.2350997 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LES_2014_2350997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6882128</ieee_id><sourcerecordid>10_1109_LES_2014_2350997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-4eb11e27f52011f5fb85fce1df37da60da1371630db8723fad72a56b56ba5f573</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOObeBV_yD3TmR9O0j2N2KnQIVp9L2lw0YpeZZOD-ezM3dnzh7uE-B_dB6JaSOaWkum_qds4IzeeMC1JV8gJNaJXzjBSSXp7ngl-jWQhfJJXIpeBigrYL3P7slIfs1bmYrTwAXqvo7S9-gMGNWxdstG6D1xA_ncbGeVxvwH_ss9oYO1jYRNyACvF0By8TtIvqH0qpxx60Bo3bfYgwhht0ZdR3gNmpT9H7qn5bPmXNy-PzctFkAyciZjn0lAKTRqS_qBGmL4UZgGrDpVYF0YpySQtOdF9Kxo3SkilR9ClKGCH5FJHj3cG7EDyYbuvtqPy-o6Q7SOuStO4grTtJS8jdEbEAcF4vypJRVvI_cAtpfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Square-Root-Free Matrix Decomposition Method for Energy-Efficient Least Square Computation on Embedded Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Fengbo Ren ; Chenxin Zhang ; Liang Liu ; Wenyao Xu ; Owall, Viktor ; Markovic, Dejan</creator><creatorcontrib>Fengbo Ren ; Chenxin Zhang ; Liang Liu ; Wenyao Xu ; Owall, Viktor ; Markovic, Dejan</creatorcontrib><description>QR decomposition (QRD) is used to solve least-squares (LS) problems for a wide range of applications. However, traditional QR decomposition methods, such as Gram-Schmidt (GS), require high computational complexity and nonlinear operations to achieve high throughput, limiting their usage on resource-limited platforms. To enable efficient LS computation on embedded systems for real-time applications, this paper presents an alternative decomposition method, called QDRD, which relaxes system requirements while maintaining the same level of performance. Specifically, QDRD eliminates both the square-root operations in the normalization step and the divisions in the subsequent backward substitution. Simulation results show that the accuracy and reliability of factorization matrices can be significantly improved by QDRD, especially when executed on precision-limited platforms. Furthermore, benchmarking results on an embedded platform show that QDRD provides constantly better energy-efficiency and higher throughput than GS-QRD in solving LS problems. Up to 4 and 6.5 times improvement in energy-efficiency and throughput, respectively, can be achieved for small-size problems.</description><identifier>ISSN: 1943-0663</identifier><identifier>EISSN: 1943-0671</identifier><identifier>DOI: 10.1109/LES.2014.2350997</identifier><identifier>CODEN: ESLMAP</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational complexity ; Embedded systems ; Energy efficiency ; Least squares approximations ; least-squares problem ; Matrix decomposition ; matrix factorization ; QR decomposition ; Throughput</subject><ispartof>IEEE embedded systems letters, 2014-12, Vol.6 (4), p.73-76</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-4eb11e27f52011f5fb85fce1df37da60da1371630db8723fad72a56b56ba5f573</citedby><cites>FETCH-LOGICAL-c305t-4eb11e27f52011f5fb85fce1df37da60da1371630db8723fad72a56b56ba5f573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6882128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6882128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fengbo Ren</creatorcontrib><creatorcontrib>Chenxin Zhang</creatorcontrib><creatorcontrib>Liang Liu</creatorcontrib><creatorcontrib>Wenyao Xu</creatorcontrib><creatorcontrib>Owall, Viktor</creatorcontrib><creatorcontrib>Markovic, Dejan</creatorcontrib><title>A Square-Root-Free Matrix Decomposition Method for Energy-Efficient Least Square Computation on Embedded Systems</title><title>IEEE embedded systems letters</title><addtitle>LES</addtitle><description>QR decomposition (QRD) is used to solve least-squares (LS) problems for a wide range of applications. However, traditional QR decomposition methods, such as Gram-Schmidt (GS), require high computational complexity and nonlinear operations to achieve high throughput, limiting their usage on resource-limited platforms. To enable efficient LS computation on embedded systems for real-time applications, this paper presents an alternative decomposition method, called QDRD, which relaxes system requirements while maintaining the same level of performance. Specifically, QDRD eliminates both the square-root operations in the normalization step and the divisions in the subsequent backward substitution. Simulation results show that the accuracy and reliability of factorization matrices can be significantly improved by QDRD, especially when executed on precision-limited platforms. Furthermore, benchmarking results on an embedded platform show that QDRD provides constantly better energy-efficiency and higher throughput than GS-QRD in solving LS problems. Up to 4 and 6.5 times improvement in energy-efficiency and throughput, respectively, can be achieved for small-size problems.</description><subject>Computational complexity</subject><subject>Embedded systems</subject><subject>Energy efficiency</subject><subject>Least squares approximations</subject><subject>least-squares problem</subject><subject>Matrix decomposition</subject><subject>matrix factorization</subject><subject>QR decomposition</subject><subject>Throughput</subject><issn>1943-0663</issn><issn>1943-0671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOObeBV_yD3TmR9O0j2N2KnQIVp9L2lw0YpeZZOD-ezM3dnzh7uE-B_dB6JaSOaWkum_qds4IzeeMC1JV8gJNaJXzjBSSXp7ngl-jWQhfJJXIpeBigrYL3P7slIfs1bmYrTwAXqvo7S9-gMGNWxdstG6D1xA_ncbGeVxvwH_ss9oYO1jYRNyACvF0By8TtIvqH0qpxx60Bo3bfYgwhht0ZdR3gNmpT9H7qn5bPmXNy-PzctFkAyciZjn0lAKTRqS_qBGmL4UZgGrDpVYF0YpySQtOdF9Kxo3SkilR9ClKGCH5FJHj3cG7EDyYbuvtqPy-o6Q7SOuStO4grTtJS8jdEbEAcF4vypJRVvI_cAtpfw</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Fengbo Ren</creator><creator>Chenxin Zhang</creator><creator>Liang Liu</creator><creator>Wenyao Xu</creator><creator>Owall, Viktor</creator><creator>Markovic, Dejan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201412</creationdate><title>A Square-Root-Free Matrix Decomposition Method for Energy-Efficient Least Square Computation on Embedded Systems</title><author>Fengbo Ren ; Chenxin Zhang ; Liang Liu ; Wenyao Xu ; Owall, Viktor ; Markovic, Dejan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-4eb11e27f52011f5fb85fce1df37da60da1371630db8723fad72a56b56ba5f573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computational complexity</topic><topic>Embedded systems</topic><topic>Energy efficiency</topic><topic>Least squares approximations</topic><topic>least-squares problem</topic><topic>Matrix decomposition</topic><topic>matrix factorization</topic><topic>QR decomposition</topic><topic>Throughput</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fengbo Ren</creatorcontrib><creatorcontrib>Chenxin Zhang</creatorcontrib><creatorcontrib>Liang Liu</creatorcontrib><creatorcontrib>Wenyao Xu</creatorcontrib><creatorcontrib>Owall, Viktor</creatorcontrib><creatorcontrib>Markovic, Dejan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE embedded systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fengbo Ren</au><au>Chenxin Zhang</au><au>Liang Liu</au><au>Wenyao Xu</au><au>Owall, Viktor</au><au>Markovic, Dejan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Square-Root-Free Matrix Decomposition Method for Energy-Efficient Least Square Computation on Embedded Systems</atitle><jtitle>IEEE embedded systems letters</jtitle><stitle>LES</stitle><date>2014-12</date><risdate>2014</risdate><volume>6</volume><issue>4</issue><spage>73</spage><epage>76</epage><pages>73-76</pages><issn>1943-0663</issn><eissn>1943-0671</eissn><coden>ESLMAP</coden><abstract>QR decomposition (QRD) is used to solve least-squares (LS) problems for a wide range of applications. However, traditional QR decomposition methods, such as Gram-Schmidt (GS), require high computational complexity and nonlinear operations to achieve high throughput, limiting their usage on resource-limited platforms. To enable efficient LS computation on embedded systems for real-time applications, this paper presents an alternative decomposition method, called QDRD, which relaxes system requirements while maintaining the same level of performance. Specifically, QDRD eliminates both the square-root operations in the normalization step and the divisions in the subsequent backward substitution. Simulation results show that the accuracy and reliability of factorization matrices can be significantly improved by QDRD, especially when executed on precision-limited platforms. Furthermore, benchmarking results on an embedded platform show that QDRD provides constantly better energy-efficiency and higher throughput than GS-QRD in solving LS problems. Up to 4 and 6.5 times improvement in energy-efficiency and throughput, respectively, can be achieved for small-size problems.</abstract><pub>IEEE</pub><doi>10.1109/LES.2014.2350997</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1943-0663 |
ispartof | IEEE embedded systems letters, 2014-12, Vol.6 (4), p.73-76 |
issn | 1943-0663 1943-0671 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LES_2014_2350997 |
source | IEEE Electronic Library (IEL) |
subjects | Computational complexity Embedded systems Energy efficiency Least squares approximations least-squares problem Matrix decomposition matrix factorization QR decomposition Throughput |
title | A Square-Root-Free Matrix Decomposition Method for Energy-Efficient Least Square Computation on Embedded Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Square-Root-Free%20Matrix%20Decomposition%20Method%20for%20Energy-Efficient%20Least%20Square%20Computation%20on%20Embedded%20Systems&rft.jtitle=IEEE%20embedded%20systems%20letters&rft.au=Fengbo%20Ren&rft.date=2014-12&rft.volume=6&rft.issue=4&rft.spage=73&rft.epage=76&rft.pages=73-76&rft.issn=1943-0663&rft.eissn=1943-0671&rft.coden=ESLMAP&rft_id=info:doi/10.1109/LES.2014.2350997&rft_dat=%3Ccrossref_RIE%3E10_1109_LES_2014_2350997%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6882128&rfr_iscdi=true |