Formation of Hump Effect Due to Top-Gate Bias Stress in Organic Thin-Film Transistors
This study investigated the reliability of top-gate p-type organic thin-film transistors in vacuum under positive bias stress-induced and positive bias illumination stress-induced instability degradation. The manufacturing process suggested that sidewall dielectric insulating layers are thin. In add...
Gespeichert in:
Veröffentlicht in: | IEEE electron device letters 2019-12, Vol.40 (12), p.1941-1944 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1944 |
---|---|
container_issue | 12 |
container_start_page | 1941 |
container_title | IEEE electron device letters |
container_volume | 40 |
creator | Chen, Hong-Chih Tsao, Yu-Ching Chu, An-Kuo Huang, Hui-Chun Lai, Wei-Chih Chen, Guan-Fu Huang, Shin-Ping Chang, Ting-Chang Chen, Po-Hsun Chen, Jian-Jie Kuo, Chuan-Wei Zhou, Kuan-Ju Hung, Yang-Hao |
description | This study investigated the reliability of top-gate p-type organic thin-film transistors in vacuum under positive bias stress-induced and positive bias illumination stress-induced instability degradation. The manufacturing process suggested that sidewall dielectric insulating layers are thin. In addition, a shorter organic gate dielectric sidewall causes a larger electric field. Therefore, sidewall electron traps exhibit parasitic transistor characteristics, and the parasitic channel experiences premature conduction, triggering an abnormal hump phenomenon. The mechanism of degradation is verified through electric field simulation; this mechanism is generated owing to the bias stress of the gate. These observations indicate that organic thin-film transistors should be designed with a suitable sidewall insulation thickness to reduce the influence of the sidewall electric field. |
doi_str_mv | 10.1109/LED.2019.2949243 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LED_2019_2949243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8880614</ieee_id><sourcerecordid>2322854470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-807d21154ce51cc8b7a4d22c332d8b0107cd6c691db37bb285bc691ade54964c3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK7eBS8Bz62ZJG3To-6nsLAH6zmkaapZtk1N0oP_3i67eBoGnnde5kHoEUgKQMqX3WqZUgJlSkteUs6u0AyyTCQky9k1mpGCQ8KA5LfoLoQDIcB5wWfoc-18p6J1PXYt3o7dgFdta3TEy9Hg6HDlhmSjosFvVgX8Eb0JAdse7_2X6q3G1bftk7U9drjyqg82ROfDPbpp1TGYh8ucTz2rarFNdvvN--J1l2haQkwEKRoKkHFtMtBa1IXiDaWaMdqImgApdJPrvISmZkVdU5HVp001JuNlzjWbo-fz3cG7n9GEKA9u9P1UKSmjEz89SSaKnCntXQjetHLwtlP-VwKRJ3lykidP8uRF3hR5OkesMeYfF0KQHDj7Axu8aSs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322854470</pqid></control><display><type>article</type><title>Formation of Hump Effect Due to Top-Gate Bias Stress in Organic Thin-Film Transistors</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Hong-Chih ; Tsao, Yu-Ching ; Chu, An-Kuo ; Huang, Hui-Chun ; Lai, Wei-Chih ; Chen, Guan-Fu ; Huang, Shin-Ping ; Chang, Ting-Chang ; Chen, Po-Hsun ; Chen, Jian-Jie ; Kuo, Chuan-Wei ; Zhou, Kuan-Ju ; Hung, Yang-Hao</creator><creatorcontrib>Chen, Hong-Chih ; Tsao, Yu-Ching ; Chu, An-Kuo ; Huang, Hui-Chun ; Lai, Wei-Chih ; Chen, Guan-Fu ; Huang, Shin-Ping ; Chang, Ting-Chang ; Chen, Po-Hsun ; Chen, Jian-Jie ; Kuo, Chuan-Wei ; Zhou, Kuan-Ju ; Hung, Yang-Hao</creatorcontrib><description>This study investigated the reliability of top-gate p-type organic thin-film transistors in vacuum under positive bias stress-induced and positive bias illumination stress-induced instability degradation. The manufacturing process suggested that sidewall dielectric insulating layers are thin. In addition, a shorter organic gate dielectric sidewall causes a larger electric field. Therefore, sidewall electron traps exhibit parasitic transistor characteristics, and the parasitic channel experiences premature conduction, triggering an abnormal hump phenomenon. The mechanism of degradation is verified through electric field simulation; this mechanism is generated owing to the bias stress of the gate. These observations indicate that organic thin-film transistors should be designed with a suitable sidewall insulation thickness to reduce the influence of the sidewall electric field.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2019.2949243</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bias ; Degradation ; Dielectrics ; Electric field ; Electric fields ; Electron traps ; illumination ; Insulating layers ; Insulation ; Logic gates ; Organic thin film transistors ; organic thin-film transistors (OTFT) ; reliability ; Semiconductor devices ; Stress ; Thin film transistors ; Transistors</subject><ispartof>IEEE electron device letters, 2019-12, Vol.40 (12), p.1941-1944</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-807d21154ce51cc8b7a4d22c332d8b0107cd6c691db37bb285bc691ade54964c3</citedby><cites>FETCH-LOGICAL-c291t-807d21154ce51cc8b7a4d22c332d8b0107cd6c691db37bb285bc691ade54964c3</cites><orcidid>0000-0002-5301-6693 ; 0000-0003-2703-8845 ; 0000-0003-4864-1010 ; 0000-0001-5223-793X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8880614$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8880614$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Hong-Chih</creatorcontrib><creatorcontrib>Tsao, Yu-Ching</creatorcontrib><creatorcontrib>Chu, An-Kuo</creatorcontrib><creatorcontrib>Huang, Hui-Chun</creatorcontrib><creatorcontrib>Lai, Wei-Chih</creatorcontrib><creatorcontrib>Chen, Guan-Fu</creatorcontrib><creatorcontrib>Huang, Shin-Ping</creatorcontrib><creatorcontrib>Chang, Ting-Chang</creatorcontrib><creatorcontrib>Chen, Po-Hsun</creatorcontrib><creatorcontrib>Chen, Jian-Jie</creatorcontrib><creatorcontrib>Kuo, Chuan-Wei</creatorcontrib><creatorcontrib>Zhou, Kuan-Ju</creatorcontrib><creatorcontrib>Hung, Yang-Hao</creatorcontrib><title>Formation of Hump Effect Due to Top-Gate Bias Stress in Organic Thin-Film Transistors</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>This study investigated the reliability of top-gate p-type organic thin-film transistors in vacuum under positive bias stress-induced and positive bias illumination stress-induced instability degradation. The manufacturing process suggested that sidewall dielectric insulating layers are thin. In addition, a shorter organic gate dielectric sidewall causes a larger electric field. Therefore, sidewall electron traps exhibit parasitic transistor characteristics, and the parasitic channel experiences premature conduction, triggering an abnormal hump phenomenon. The mechanism of degradation is verified through electric field simulation; this mechanism is generated owing to the bias stress of the gate. These observations indicate that organic thin-film transistors should be designed with a suitable sidewall insulation thickness to reduce the influence of the sidewall electric field.</description><subject>Bias</subject><subject>Degradation</subject><subject>Dielectrics</subject><subject>Electric field</subject><subject>Electric fields</subject><subject>Electron traps</subject><subject>illumination</subject><subject>Insulating layers</subject><subject>Insulation</subject><subject>Logic gates</subject><subject>Organic thin film transistors</subject><subject>organic thin-film transistors (OTFT)</subject><subject>reliability</subject><subject>Semiconductor devices</subject><subject>Stress</subject><subject>Thin film transistors</subject><subject>Transistors</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LxDAQhoMouK7eBS8Bz62ZJG3To-6nsLAH6zmkaapZtk1N0oP_3i67eBoGnnde5kHoEUgKQMqX3WqZUgJlSkteUs6u0AyyTCQky9k1mpGCQ8KA5LfoLoQDIcB5wWfoc-18p6J1PXYt3o7dgFdta3TEy9Hg6HDlhmSjosFvVgX8Eb0JAdse7_2X6q3G1bftk7U9drjyqg82ROfDPbpp1TGYh8ucTz2rarFNdvvN--J1l2haQkwEKRoKkHFtMtBa1IXiDaWaMdqImgApdJPrvISmZkVdU5HVp001JuNlzjWbo-fz3cG7n9GEKA9u9P1UKSmjEz89SSaKnCntXQjetHLwtlP-VwKRJ3lykidP8uRF3hR5OkesMeYfF0KQHDj7Axu8aSs</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Chen, Hong-Chih</creator><creator>Tsao, Yu-Ching</creator><creator>Chu, An-Kuo</creator><creator>Huang, Hui-Chun</creator><creator>Lai, Wei-Chih</creator><creator>Chen, Guan-Fu</creator><creator>Huang, Shin-Ping</creator><creator>Chang, Ting-Chang</creator><creator>Chen, Po-Hsun</creator><creator>Chen, Jian-Jie</creator><creator>Kuo, Chuan-Wei</creator><creator>Zhou, Kuan-Ju</creator><creator>Hung, Yang-Hao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5301-6693</orcidid><orcidid>https://orcid.org/0000-0003-2703-8845</orcidid><orcidid>https://orcid.org/0000-0003-4864-1010</orcidid><orcidid>https://orcid.org/0000-0001-5223-793X</orcidid></search><sort><creationdate>20191201</creationdate><title>Formation of Hump Effect Due to Top-Gate Bias Stress in Organic Thin-Film Transistors</title><author>Chen, Hong-Chih ; Tsao, Yu-Ching ; Chu, An-Kuo ; Huang, Hui-Chun ; Lai, Wei-Chih ; Chen, Guan-Fu ; Huang, Shin-Ping ; Chang, Ting-Chang ; Chen, Po-Hsun ; Chen, Jian-Jie ; Kuo, Chuan-Wei ; Zhou, Kuan-Ju ; Hung, Yang-Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-807d21154ce51cc8b7a4d22c332d8b0107cd6c691db37bb285bc691ade54964c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bias</topic><topic>Degradation</topic><topic>Dielectrics</topic><topic>Electric field</topic><topic>Electric fields</topic><topic>Electron traps</topic><topic>illumination</topic><topic>Insulating layers</topic><topic>Insulation</topic><topic>Logic gates</topic><topic>Organic thin film transistors</topic><topic>organic thin-film transistors (OTFT)</topic><topic>reliability</topic><topic>Semiconductor devices</topic><topic>Stress</topic><topic>Thin film transistors</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hong-Chih</creatorcontrib><creatorcontrib>Tsao, Yu-Ching</creatorcontrib><creatorcontrib>Chu, An-Kuo</creatorcontrib><creatorcontrib>Huang, Hui-Chun</creatorcontrib><creatorcontrib>Lai, Wei-Chih</creatorcontrib><creatorcontrib>Chen, Guan-Fu</creatorcontrib><creatorcontrib>Huang, Shin-Ping</creatorcontrib><creatorcontrib>Chang, Ting-Chang</creatorcontrib><creatorcontrib>Chen, Po-Hsun</creatorcontrib><creatorcontrib>Chen, Jian-Jie</creatorcontrib><creatorcontrib>Kuo, Chuan-Wei</creatorcontrib><creatorcontrib>Zhou, Kuan-Ju</creatorcontrib><creatorcontrib>Hung, Yang-Hao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Hong-Chih</au><au>Tsao, Yu-Ching</au><au>Chu, An-Kuo</au><au>Huang, Hui-Chun</au><au>Lai, Wei-Chih</au><au>Chen, Guan-Fu</au><au>Huang, Shin-Ping</au><au>Chang, Ting-Chang</au><au>Chen, Po-Hsun</au><au>Chen, Jian-Jie</au><au>Kuo, Chuan-Wei</au><au>Zhou, Kuan-Ju</au><au>Hung, Yang-Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of Hump Effect Due to Top-Gate Bias Stress in Organic Thin-Film Transistors</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>40</volume><issue>12</issue><spage>1941</spage><epage>1944</epage><pages>1941-1944</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>This study investigated the reliability of top-gate p-type organic thin-film transistors in vacuum under positive bias stress-induced and positive bias illumination stress-induced instability degradation. The manufacturing process suggested that sidewall dielectric insulating layers are thin. In addition, a shorter organic gate dielectric sidewall causes a larger electric field. Therefore, sidewall electron traps exhibit parasitic transistor characteristics, and the parasitic channel experiences premature conduction, triggering an abnormal hump phenomenon. The mechanism of degradation is verified through electric field simulation; this mechanism is generated owing to the bias stress of the gate. These observations indicate that organic thin-film transistors should be designed with a suitable sidewall insulation thickness to reduce the influence of the sidewall electric field.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2019.2949243</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-5301-6693</orcidid><orcidid>https://orcid.org/0000-0003-2703-8845</orcidid><orcidid>https://orcid.org/0000-0003-4864-1010</orcidid><orcidid>https://orcid.org/0000-0001-5223-793X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2019-12, Vol.40 (12), p.1941-1944 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LED_2019_2949243 |
source | IEEE Electronic Library (IEL) |
subjects | Bias Degradation Dielectrics Electric field Electric fields Electron traps illumination Insulating layers Insulation Logic gates Organic thin film transistors organic thin-film transistors (OTFT) reliability Semiconductor devices Stress Thin film transistors Transistors |
title | Formation of Hump Effect Due to Top-Gate Bias Stress in Organic Thin-Film Transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20Hump%20Effect%20Due%20to%20Top-Gate%20Bias%20Stress%20in%20Organic%20Thin-Film%20Transistors&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Chen,%20Hong-Chih&rft.date=2019-12-01&rft.volume=40&rft.issue=12&rft.spage=1941&rft.epage=1944&rft.pages=1941-1944&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2019.2949243&rft_dat=%3Cproquest_RIE%3E2322854470%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322854470&rft_id=info:pmid/&rft_ieee_id=8880614&rfr_iscdi=true |