Formation of Hump Effect Due to Top-Gate Bias Stress in Organic Thin-Film Transistors

This study investigated the reliability of top-gate p-type organic thin-film transistors in vacuum under positive bias stress-induced and positive bias illumination stress-induced instability degradation. The manufacturing process suggested that sidewall dielectric insulating layers are thin. In add...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2019-12, Vol.40 (12), p.1941-1944
Hauptverfasser: Chen, Hong-Chih, Tsao, Yu-Ching, Chu, An-Kuo, Huang, Hui-Chun, Lai, Wei-Chih, Chen, Guan-Fu, Huang, Shin-Ping, Chang, Ting-Chang, Chen, Po-Hsun, Chen, Jian-Jie, Kuo, Chuan-Wei, Zhou, Kuan-Ju, Hung, Yang-Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1944
container_issue 12
container_start_page 1941
container_title IEEE electron device letters
container_volume 40
creator Chen, Hong-Chih
Tsao, Yu-Ching
Chu, An-Kuo
Huang, Hui-Chun
Lai, Wei-Chih
Chen, Guan-Fu
Huang, Shin-Ping
Chang, Ting-Chang
Chen, Po-Hsun
Chen, Jian-Jie
Kuo, Chuan-Wei
Zhou, Kuan-Ju
Hung, Yang-Hao
description This study investigated the reliability of top-gate p-type organic thin-film transistors in vacuum under positive bias stress-induced and positive bias illumination stress-induced instability degradation. The manufacturing process suggested that sidewall dielectric insulating layers are thin. In addition, a shorter organic gate dielectric sidewall causes a larger electric field. Therefore, sidewall electron traps exhibit parasitic transistor characteristics, and the parasitic channel experiences premature conduction, triggering an abnormal hump phenomenon. The mechanism of degradation is verified through electric field simulation; this mechanism is generated owing to the bias stress of the gate. These observations indicate that organic thin-film transistors should be designed with a suitable sidewall insulation thickness to reduce the influence of the sidewall electric field.
doi_str_mv 10.1109/LED.2019.2949243
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LED_2019_2949243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8880614</ieee_id><sourcerecordid>2322854470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-807d21154ce51cc8b7a4d22c332d8b0107cd6c691db37bb285bc691ade54964c3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK7eBS8Bz62ZJG3To-6nsLAH6zmkaapZtk1N0oP_3i67eBoGnnde5kHoEUgKQMqX3WqZUgJlSkteUs6u0AyyTCQky9k1mpGCQ8KA5LfoLoQDIcB5wWfoc-18p6J1PXYt3o7dgFdta3TEy9Hg6HDlhmSjosFvVgX8Eb0JAdse7_2X6q3G1bftk7U9drjyqg82ROfDPbpp1TGYh8ucTz2rarFNdvvN--J1l2haQkwEKRoKkHFtMtBa1IXiDaWaMdqImgApdJPrvISmZkVdU5HVp001JuNlzjWbo-fz3cG7n9GEKA9u9P1UKSmjEz89SSaKnCntXQjetHLwtlP-VwKRJ3lykidP8uRF3hR5OkesMeYfF0KQHDj7Axu8aSs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322854470</pqid></control><display><type>article</type><title>Formation of Hump Effect Due to Top-Gate Bias Stress in Organic Thin-Film Transistors</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Hong-Chih ; Tsao, Yu-Ching ; Chu, An-Kuo ; Huang, Hui-Chun ; Lai, Wei-Chih ; Chen, Guan-Fu ; Huang, Shin-Ping ; Chang, Ting-Chang ; Chen, Po-Hsun ; Chen, Jian-Jie ; Kuo, Chuan-Wei ; Zhou, Kuan-Ju ; Hung, Yang-Hao</creator><creatorcontrib>Chen, Hong-Chih ; Tsao, Yu-Ching ; Chu, An-Kuo ; Huang, Hui-Chun ; Lai, Wei-Chih ; Chen, Guan-Fu ; Huang, Shin-Ping ; Chang, Ting-Chang ; Chen, Po-Hsun ; Chen, Jian-Jie ; Kuo, Chuan-Wei ; Zhou, Kuan-Ju ; Hung, Yang-Hao</creatorcontrib><description>This study investigated the reliability of top-gate p-type organic thin-film transistors in vacuum under positive bias stress-induced and positive bias illumination stress-induced instability degradation. The manufacturing process suggested that sidewall dielectric insulating layers are thin. In addition, a shorter organic gate dielectric sidewall causes a larger electric field. Therefore, sidewall electron traps exhibit parasitic transistor characteristics, and the parasitic channel experiences premature conduction, triggering an abnormal hump phenomenon. The mechanism of degradation is verified through electric field simulation; this mechanism is generated owing to the bias stress of the gate. These observations indicate that organic thin-film transistors should be designed with a suitable sidewall insulation thickness to reduce the influence of the sidewall electric field.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2019.2949243</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bias ; Degradation ; Dielectrics ; Electric field ; Electric fields ; Electron traps ; illumination ; Insulating layers ; Insulation ; Logic gates ; Organic thin film transistors ; organic thin-film transistors (OTFT) ; reliability ; Semiconductor devices ; Stress ; Thin film transistors ; Transistors</subject><ispartof>IEEE electron device letters, 2019-12, Vol.40 (12), p.1941-1944</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-807d21154ce51cc8b7a4d22c332d8b0107cd6c691db37bb285bc691ade54964c3</citedby><cites>FETCH-LOGICAL-c291t-807d21154ce51cc8b7a4d22c332d8b0107cd6c691db37bb285bc691ade54964c3</cites><orcidid>0000-0002-5301-6693 ; 0000-0003-2703-8845 ; 0000-0003-4864-1010 ; 0000-0001-5223-793X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8880614$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8880614$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Hong-Chih</creatorcontrib><creatorcontrib>Tsao, Yu-Ching</creatorcontrib><creatorcontrib>Chu, An-Kuo</creatorcontrib><creatorcontrib>Huang, Hui-Chun</creatorcontrib><creatorcontrib>Lai, Wei-Chih</creatorcontrib><creatorcontrib>Chen, Guan-Fu</creatorcontrib><creatorcontrib>Huang, Shin-Ping</creatorcontrib><creatorcontrib>Chang, Ting-Chang</creatorcontrib><creatorcontrib>Chen, Po-Hsun</creatorcontrib><creatorcontrib>Chen, Jian-Jie</creatorcontrib><creatorcontrib>Kuo, Chuan-Wei</creatorcontrib><creatorcontrib>Zhou, Kuan-Ju</creatorcontrib><creatorcontrib>Hung, Yang-Hao</creatorcontrib><title>Formation of Hump Effect Due to Top-Gate Bias Stress in Organic Thin-Film Transistors</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>This study investigated the reliability of top-gate p-type organic thin-film transistors in vacuum under positive bias stress-induced and positive bias illumination stress-induced instability degradation. The manufacturing process suggested that sidewall dielectric insulating layers are thin. In addition, a shorter organic gate dielectric sidewall causes a larger electric field. Therefore, sidewall electron traps exhibit parasitic transistor characteristics, and the parasitic channel experiences premature conduction, triggering an abnormal hump phenomenon. The mechanism of degradation is verified through electric field simulation; this mechanism is generated owing to the bias stress of the gate. These observations indicate that organic thin-film transistors should be designed with a suitable sidewall insulation thickness to reduce the influence of the sidewall electric field.</description><subject>Bias</subject><subject>Degradation</subject><subject>Dielectrics</subject><subject>Electric field</subject><subject>Electric fields</subject><subject>Electron traps</subject><subject>illumination</subject><subject>Insulating layers</subject><subject>Insulation</subject><subject>Logic gates</subject><subject>Organic thin film transistors</subject><subject>organic thin-film transistors (OTFT)</subject><subject>reliability</subject><subject>Semiconductor devices</subject><subject>Stress</subject><subject>Thin film transistors</subject><subject>Transistors</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LxDAQhoMouK7eBS8Bz62ZJG3To-6nsLAH6zmkaapZtk1N0oP_3i67eBoGnnde5kHoEUgKQMqX3WqZUgJlSkteUs6u0AyyTCQky9k1mpGCQ8KA5LfoLoQDIcB5wWfoc-18p6J1PXYt3o7dgFdta3TEy9Hg6HDlhmSjosFvVgX8Eb0JAdse7_2X6q3G1bftk7U9drjyqg82ROfDPbpp1TGYh8ucTz2rarFNdvvN--J1l2haQkwEKRoKkHFtMtBa1IXiDaWaMdqImgApdJPrvISmZkVdU5HVp001JuNlzjWbo-fz3cG7n9GEKA9u9P1UKSmjEz89SSaKnCntXQjetHLwtlP-VwKRJ3lykidP8uRF3hR5OkesMeYfF0KQHDj7Axu8aSs</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Chen, Hong-Chih</creator><creator>Tsao, Yu-Ching</creator><creator>Chu, An-Kuo</creator><creator>Huang, Hui-Chun</creator><creator>Lai, Wei-Chih</creator><creator>Chen, Guan-Fu</creator><creator>Huang, Shin-Ping</creator><creator>Chang, Ting-Chang</creator><creator>Chen, Po-Hsun</creator><creator>Chen, Jian-Jie</creator><creator>Kuo, Chuan-Wei</creator><creator>Zhou, Kuan-Ju</creator><creator>Hung, Yang-Hao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5301-6693</orcidid><orcidid>https://orcid.org/0000-0003-2703-8845</orcidid><orcidid>https://orcid.org/0000-0003-4864-1010</orcidid><orcidid>https://orcid.org/0000-0001-5223-793X</orcidid></search><sort><creationdate>20191201</creationdate><title>Formation of Hump Effect Due to Top-Gate Bias Stress in Organic Thin-Film Transistors</title><author>Chen, Hong-Chih ; Tsao, Yu-Ching ; Chu, An-Kuo ; Huang, Hui-Chun ; Lai, Wei-Chih ; Chen, Guan-Fu ; Huang, Shin-Ping ; Chang, Ting-Chang ; Chen, Po-Hsun ; Chen, Jian-Jie ; Kuo, Chuan-Wei ; Zhou, Kuan-Ju ; Hung, Yang-Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-807d21154ce51cc8b7a4d22c332d8b0107cd6c691db37bb285bc691ade54964c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bias</topic><topic>Degradation</topic><topic>Dielectrics</topic><topic>Electric field</topic><topic>Electric fields</topic><topic>Electron traps</topic><topic>illumination</topic><topic>Insulating layers</topic><topic>Insulation</topic><topic>Logic gates</topic><topic>Organic thin film transistors</topic><topic>organic thin-film transistors (OTFT)</topic><topic>reliability</topic><topic>Semiconductor devices</topic><topic>Stress</topic><topic>Thin film transistors</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hong-Chih</creatorcontrib><creatorcontrib>Tsao, Yu-Ching</creatorcontrib><creatorcontrib>Chu, An-Kuo</creatorcontrib><creatorcontrib>Huang, Hui-Chun</creatorcontrib><creatorcontrib>Lai, Wei-Chih</creatorcontrib><creatorcontrib>Chen, Guan-Fu</creatorcontrib><creatorcontrib>Huang, Shin-Ping</creatorcontrib><creatorcontrib>Chang, Ting-Chang</creatorcontrib><creatorcontrib>Chen, Po-Hsun</creatorcontrib><creatorcontrib>Chen, Jian-Jie</creatorcontrib><creatorcontrib>Kuo, Chuan-Wei</creatorcontrib><creatorcontrib>Zhou, Kuan-Ju</creatorcontrib><creatorcontrib>Hung, Yang-Hao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Hong-Chih</au><au>Tsao, Yu-Ching</au><au>Chu, An-Kuo</au><au>Huang, Hui-Chun</au><au>Lai, Wei-Chih</au><au>Chen, Guan-Fu</au><au>Huang, Shin-Ping</au><au>Chang, Ting-Chang</au><au>Chen, Po-Hsun</au><au>Chen, Jian-Jie</au><au>Kuo, Chuan-Wei</au><au>Zhou, Kuan-Ju</au><au>Hung, Yang-Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of Hump Effect Due to Top-Gate Bias Stress in Organic Thin-Film Transistors</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>40</volume><issue>12</issue><spage>1941</spage><epage>1944</epage><pages>1941-1944</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>This study investigated the reliability of top-gate p-type organic thin-film transistors in vacuum under positive bias stress-induced and positive bias illumination stress-induced instability degradation. The manufacturing process suggested that sidewall dielectric insulating layers are thin. In addition, a shorter organic gate dielectric sidewall causes a larger electric field. Therefore, sidewall electron traps exhibit parasitic transistor characteristics, and the parasitic channel experiences premature conduction, triggering an abnormal hump phenomenon. The mechanism of degradation is verified through electric field simulation; this mechanism is generated owing to the bias stress of the gate. These observations indicate that organic thin-film transistors should be designed with a suitable sidewall insulation thickness to reduce the influence of the sidewall electric field.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2019.2949243</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-5301-6693</orcidid><orcidid>https://orcid.org/0000-0003-2703-8845</orcidid><orcidid>https://orcid.org/0000-0003-4864-1010</orcidid><orcidid>https://orcid.org/0000-0001-5223-793X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2019-12, Vol.40 (12), p.1941-1944
issn 0741-3106
1558-0563
language eng
recordid cdi_crossref_primary_10_1109_LED_2019_2949243
source IEEE Electronic Library (IEL)
subjects Bias
Degradation
Dielectrics
Electric field
Electric fields
Electron traps
illumination
Insulating layers
Insulation
Logic gates
Organic thin film transistors
organic thin-film transistors (OTFT)
reliability
Semiconductor devices
Stress
Thin film transistors
Transistors
title Formation of Hump Effect Due to Top-Gate Bias Stress in Organic Thin-Film Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20Hump%20Effect%20Due%20to%20Top-Gate%20Bias%20Stress%20in%20Organic%20Thin-Film%20Transistors&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Chen,%20Hong-Chih&rft.date=2019-12-01&rft.volume=40&rft.issue=12&rft.spage=1941&rft.epage=1944&rft.pages=1941-1944&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2019.2949243&rft_dat=%3Cproquest_RIE%3E2322854470%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322854470&rft_id=info:pmid/&rft_ieee_id=8880614&rfr_iscdi=true