Buffer-Free Ge/Si by Rapid Melting Growth Technique for Separate Absorption and Multiplication Avalanche Photodetectors

Herein, we report the formation of buffer-free germanium (Ge) on silicon by a two-step rapid melting growth technique for separate absorption and multiplication (SAM) avalanche photodetectors (APDs) as well as its characteristic measurements. The quality of the Ge film was verified by standard elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2019-06, Vol.40 (6), p.945-948
Hauptverfasser: Hsin, Cheng-Lun, Chou, Chin-Hsien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 948
container_issue 6
container_start_page 945
container_title IEEE electron device letters
container_volume 40
creator Hsin, Cheng-Lun
Chou, Chin-Hsien
description Herein, we report the formation of buffer-free germanium (Ge) on silicon by a two-step rapid melting growth technique for separate absorption and multiplication (SAM) avalanche photodetectors (APDs) as well as its characteristic measurements. The quality of the Ge film was verified by standard electron microscopy and Raman spectroscopy. The high-quality Ge functioned as the absorption layer, whereas the multiplication layer was made with the Si layer. The electrical measurement identified that the photodetector shows high responsivity and gain to the near-infrared spectrum before the breakdown. The nanocrystallites and the intermixing SiGe layer at the interface will be the recombination centers for the photogenerated electron-hole pairs, resulting in a low photocurrent in a low-bias range. This letter demonstrated that buffer-free Ge films and SAM APDs with good photoelectric conversion efficiency would be obtained using a CMOS-compatible process.
doi_str_mv 10.1109/LED.2019.2910047
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LED_2019_2910047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8684897</ieee_id><sourcerecordid>2231870615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-7fc0892ded14623f0c88411e723b2c8e4acc35e27cc312231365fe4f5249ebe63</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhujiYjem3jTxOtBv7Z1l4iAJhiN4PXSdacyMtfZdRL-vUWIVyc5eZ_z8SB0S8mIUpKNl7PHESM0G7GMEiLSMzSgcSwjEif8HA1IKmjEKUku0VXXbQmhQqRigHYPvTHgorkDwAsYrypc7PG7aqsSv0Dtq-YTL5zd-Q1eg9401XcP2FiHV9AqpzzgSdFZ1_rKNlg1AeoD1NaVVn-tyY-qVaM3gN821tsSPGhvXXeNLoyqO7g51SH6mM_W06do-bp4nk6WkQ5_-Cg1msiMlVBSkTBuiJZSUAop4wXTEoTSmsfA0lAoY5zyJDYgTMxEBgUkfIjuj3NbZ8Ppnc-3tndNWJkf4jIlCY1DihxT2tmuc2Dy1lVfyu1zSvKD3jzozQ9685PegNwdkQoA_uMykUJmKf8Fial2uA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231870615</pqid></control><display><type>article</type><title>Buffer-Free Ge/Si by Rapid Melting Growth Technique for Separate Absorption and Multiplication Avalanche Photodetectors</title><source>IEEE Electronic Library (IEL)</source><creator>Hsin, Cheng-Lun ; Chou, Chin-Hsien</creator><creatorcontrib>Hsin, Cheng-Lun ; Chou, Chin-Hsien</creatorcontrib><description>Herein, we report the formation of buffer-free germanium (Ge) on silicon by a two-step rapid melting growth technique for separate absorption and multiplication (SAM) avalanche photodetectors (APDs) as well as its characteristic measurements. The quality of the Ge film was verified by standard electron microscopy and Raman spectroscopy. The high-quality Ge functioned as the absorption layer, whereas the multiplication layer was made with the Si layer. The electrical measurement identified that the photodetector shows high responsivity and gain to the near-infrared spectrum before the breakdown. The nanocrystallites and the intermixing SiGe layer at the interface will be the recombination centers for the photogenerated electron-hole pairs, resulting in a low photocurrent in a low-bias range. This letter demonstrated that buffer-free Ge films and SAM APDs with good photoelectric conversion efficiency would be obtained using a CMOS-compatible process.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2019.2910047</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Absorption ; Avalanche diodes ; avalanche photodetectors ; Buffers ; CMOS ; Electrical measurement ; Germanium ; Infrared spectra ; Lighting ; Microscopy ; Multiplication ; Near infrared radiation ; Optical buffering ; Photodetectors ; Photoelectric effect ; Photoelectric emission ; Photoelectricity ; Photometers ; Raman spectroscopy ; rapid-melting-growth ; separate absorption and multiplication ; Silicon</subject><ispartof>IEEE electron device letters, 2019-06, Vol.40 (6), p.945-948</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-7fc0892ded14623f0c88411e723b2c8e4acc35e27cc312231365fe4f5249ebe63</citedby><cites>FETCH-LOGICAL-c291t-7fc0892ded14623f0c88411e723b2c8e4acc35e27cc312231365fe4f5249ebe63</cites><orcidid>0000-0002-3890-5054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8684897$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8684897$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hsin, Cheng-Lun</creatorcontrib><creatorcontrib>Chou, Chin-Hsien</creatorcontrib><title>Buffer-Free Ge/Si by Rapid Melting Growth Technique for Separate Absorption and Multiplication Avalanche Photodetectors</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>Herein, we report the formation of buffer-free germanium (Ge) on silicon by a two-step rapid melting growth technique for separate absorption and multiplication (SAM) avalanche photodetectors (APDs) as well as its characteristic measurements. The quality of the Ge film was verified by standard electron microscopy and Raman spectroscopy. The high-quality Ge functioned as the absorption layer, whereas the multiplication layer was made with the Si layer. The electrical measurement identified that the photodetector shows high responsivity and gain to the near-infrared spectrum before the breakdown. The nanocrystallites and the intermixing SiGe layer at the interface will be the recombination centers for the photogenerated electron-hole pairs, resulting in a low photocurrent in a low-bias range. This letter demonstrated that buffer-free Ge films and SAM APDs with good photoelectric conversion efficiency would be obtained using a CMOS-compatible process.</description><subject>Absorption</subject><subject>Avalanche diodes</subject><subject>avalanche photodetectors</subject><subject>Buffers</subject><subject>CMOS</subject><subject>Electrical measurement</subject><subject>Germanium</subject><subject>Infrared spectra</subject><subject>Lighting</subject><subject>Microscopy</subject><subject>Multiplication</subject><subject>Near infrared radiation</subject><subject>Optical buffering</subject><subject>Photodetectors</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoelectricity</subject><subject>Photometers</subject><subject>Raman spectroscopy</subject><subject>rapid-melting-growth</subject><subject>separate absorption and multiplication</subject><subject>Silicon</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1PwjAUhhujiYjem3jTxOtBv7Z1l4iAJhiN4PXSdacyMtfZdRL-vUWIVyc5eZ_z8SB0S8mIUpKNl7PHESM0G7GMEiLSMzSgcSwjEif8HA1IKmjEKUku0VXXbQmhQqRigHYPvTHgorkDwAsYrypc7PG7aqsSv0Dtq-YTL5zd-Q1eg9401XcP2FiHV9AqpzzgSdFZ1_rKNlg1AeoD1NaVVn-tyY-qVaM3gN821tsSPGhvXXeNLoyqO7g51SH6mM_W06do-bp4nk6WkQ5_-Cg1msiMlVBSkTBuiJZSUAop4wXTEoTSmsfA0lAoY5zyJDYgTMxEBgUkfIjuj3NbZ8Ppnc-3tndNWJkf4jIlCY1DihxT2tmuc2Dy1lVfyu1zSvKD3jzozQ9685PegNwdkQoA_uMykUJmKf8Fial2uA</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Hsin, Cheng-Lun</creator><creator>Chou, Chin-Hsien</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3890-5054</orcidid></search><sort><creationdate>20190601</creationdate><title>Buffer-Free Ge/Si by Rapid Melting Growth Technique for Separate Absorption and Multiplication Avalanche Photodetectors</title><author>Hsin, Cheng-Lun ; Chou, Chin-Hsien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-7fc0892ded14623f0c88411e723b2c8e4acc35e27cc312231365fe4f5249ebe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption</topic><topic>Avalanche diodes</topic><topic>avalanche photodetectors</topic><topic>Buffers</topic><topic>CMOS</topic><topic>Electrical measurement</topic><topic>Germanium</topic><topic>Infrared spectra</topic><topic>Lighting</topic><topic>Microscopy</topic><topic>Multiplication</topic><topic>Near infrared radiation</topic><topic>Optical buffering</topic><topic>Photodetectors</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoelectricity</topic><topic>Photometers</topic><topic>Raman spectroscopy</topic><topic>rapid-melting-growth</topic><topic>separate absorption and multiplication</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsin, Cheng-Lun</creatorcontrib><creatorcontrib>Chou, Chin-Hsien</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hsin, Cheng-Lun</au><au>Chou, Chin-Hsien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Buffer-Free Ge/Si by Rapid Melting Growth Technique for Separate Absorption and Multiplication Avalanche Photodetectors</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>40</volume><issue>6</issue><spage>945</spage><epage>948</epage><pages>945-948</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>Herein, we report the formation of buffer-free germanium (Ge) on silicon by a two-step rapid melting growth technique for separate absorption and multiplication (SAM) avalanche photodetectors (APDs) as well as its characteristic measurements. The quality of the Ge film was verified by standard electron microscopy and Raman spectroscopy. The high-quality Ge functioned as the absorption layer, whereas the multiplication layer was made with the Si layer. The electrical measurement identified that the photodetector shows high responsivity and gain to the near-infrared spectrum before the breakdown. The nanocrystallites and the intermixing SiGe layer at the interface will be the recombination centers for the photogenerated electron-hole pairs, resulting in a low photocurrent in a low-bias range. This letter demonstrated that buffer-free Ge films and SAM APDs with good photoelectric conversion efficiency would be obtained using a CMOS-compatible process.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2019.2910047</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-3890-5054</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2019-06, Vol.40 (6), p.945-948
issn 0741-3106
1558-0563
language eng
recordid cdi_crossref_primary_10_1109_LED_2019_2910047
source IEEE Electronic Library (IEL)
subjects Absorption
Avalanche diodes
avalanche photodetectors
Buffers
CMOS
Electrical measurement
Germanium
Infrared spectra
Lighting
Microscopy
Multiplication
Near infrared radiation
Optical buffering
Photodetectors
Photoelectric effect
Photoelectric emission
Photoelectricity
Photometers
Raman spectroscopy
rapid-melting-growth
separate absorption and multiplication
Silicon
title Buffer-Free Ge/Si by Rapid Melting Growth Technique for Separate Absorption and Multiplication Avalanche Photodetectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Buffer-Free%20Ge/Si%20by%20Rapid%20Melting%20Growth%20Technique%20for%20Separate%20Absorption%20and%20Multiplication%20Avalanche%20Photodetectors&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Hsin,%20Cheng-Lun&rft.date=2019-06-01&rft.volume=40&rft.issue=6&rft.spage=945&rft.epage=948&rft.pages=945-948&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2019.2910047&rft_dat=%3Cproquest_RIE%3E2231870615%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231870615&rft_id=info:pmid/&rft_ieee_id=8684897&rfr_iscdi=true