High-Performance Recessed-Channel Germanium Thin-Film Transistors via Excimer Laser Crystallization

This letter demonstrates the excimer laser crystallization (ELC) of germanium (Ge) thin films with the recessed-channel (RC) structure for high-performance p-channel Ge thin-film transistors (TFTs). Using ELC, large longitudinal grains with a single perpendicular grain boundary (GB) in the center of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2018-03, Vol.39 (3), p.367-370
Hauptverfasser: Liao, Chan-Yu, Chen, Shih-Hung, Huang, Wen-Hsien, Shen, Chang-Hong, Shieh, Jia-Min, Cheng, Huang-Chung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 370
container_issue 3
container_start_page 367
container_title IEEE electron device letters
container_volume 39
creator Liao, Chan-Yu
Chen, Shih-Hung
Huang, Wen-Hsien
Shen, Chang-Hong
Shieh, Jia-Min
Cheng, Huang-Chung
description This letter demonstrates the excimer laser crystallization (ELC) of germanium (Ge) thin films with the recessed-channel (RC) structure for high-performance p-channel Ge thin-film transistors (TFTs). Using ELC, large longitudinal grains with a single perpendicular grain boundary (GB) in the center of the recessed region were formed. This can be attributed to the lateral grain growth from un-melted Ge solid seeds in the thick region toward the complete melting recessed region during ELC. Consequently, the proposed p-channel RC-ELC Ge TFTs possessing large longitudinal grains without the perpendicular GB in the channel region exhibited a superior field-effect hole mobility of 447 cm 2 V −1 s −1 with minor performance deviation.
doi_str_mv 10.1109/LED.2018.2791506
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LED_2018_2791506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8252776</ieee_id><sourcerecordid>2010400321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-9b89a5d292eb2f2500820aea2c1583509c3fcd54262e019d71a11f88baa685493</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA560zu9lkc5TaDyGgSD2H7WZit-Sj7qZi_fWmVLzMDMzzzsDD2C3CBBGyh3z2NBGAeiLSDBUkZ2yESmkOKpHnbARpjFwiJJfsKoQtAMZxGo-YXbqPDX8lX3W-Ma2l6I0shUAln25M21IdLei4cfsmWm1cy-euHiZv2uBC3_kQfTkTzb6ta8hHuQlDnfpD6E1dux_Tu669ZheVqQPd_PUxe5_PVtMlz18Wz9PHnFup0p5na50ZVYpM0FpUQgFoAYaMsKi0VJBZWdlSxSIRBJiVKRrESuu1MYlWcSbH7P50d-e7zz2Fvth2e98OL4vBDMQAUuBAwYmyvgvBU1XsvGuMPxQIxVFlMag8BnTxp3KI3J0ijoj-cS2USNNE_gKB3m9U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010400321</pqid></control><display><type>article</type><title>High-Performance Recessed-Channel Germanium Thin-Film Transistors via Excimer Laser Crystallization</title><source>IEEE Electronic Library (IEL)</source><creator>Liao, Chan-Yu ; Chen, Shih-Hung ; Huang, Wen-Hsien ; Shen, Chang-Hong ; Shieh, Jia-Min ; Cheng, Huang-Chung</creator><creatorcontrib>Liao, Chan-Yu ; Chen, Shih-Hung ; Huang, Wen-Hsien ; Shen, Chang-Hong ; Shieh, Jia-Min ; Cheng, Huang-Chung</creatorcontrib><description>This letter demonstrates the excimer laser crystallization (ELC) of germanium (Ge) thin films with the recessed-channel (RC) structure for high-performance p-channel Ge thin-film transistors (TFTs). Using ELC, large longitudinal grains with a single perpendicular grain boundary (GB) in the center of the recessed region were formed. This can be attributed to the lateral grain growth from un-melted Ge solid seeds in the thick region toward the complete melting recessed region during ELC. Consequently, the proposed p-channel RC-ELC Ge TFTs possessing large longitudinal grains without the perpendicular GB in the channel region exhibited a superior field-effect hole mobility of 447 cm 2 V −1 s −1 with minor performance deviation.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2018.2791506</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Crystallization ; excimer laser crystallization (ELC) ; Germanium ; Germanium (Ge) ; Grain boundaries ; Hole mobility ; Iron ; Lasers ; location-controlled grain boundary (LCGB) ; Seeds ; Semiconductor devices ; Silicon ; Thin film transistors ; thin-film transistor (TFT) ; Transistors</subject><ispartof>IEEE electron device letters, 2018-03, Vol.39 (3), p.367-370</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-9b89a5d292eb2f2500820aea2c1583509c3fcd54262e019d71a11f88baa685493</citedby><cites>FETCH-LOGICAL-c357t-9b89a5d292eb2f2500820aea2c1583509c3fcd54262e019d71a11f88baa685493</cites><orcidid>0000-0002-6413-2710 ; 0000-0001-5266-1052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8252776$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8252776$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liao, Chan-Yu</creatorcontrib><creatorcontrib>Chen, Shih-Hung</creatorcontrib><creatorcontrib>Huang, Wen-Hsien</creatorcontrib><creatorcontrib>Shen, Chang-Hong</creatorcontrib><creatorcontrib>Shieh, Jia-Min</creatorcontrib><creatorcontrib>Cheng, Huang-Chung</creatorcontrib><title>High-Performance Recessed-Channel Germanium Thin-Film Transistors via Excimer Laser Crystallization</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>This letter demonstrates the excimer laser crystallization (ELC) of germanium (Ge) thin films with the recessed-channel (RC) structure for high-performance p-channel Ge thin-film transistors (TFTs). Using ELC, large longitudinal grains with a single perpendicular grain boundary (GB) in the center of the recessed region were formed. This can be attributed to the lateral grain growth from un-melted Ge solid seeds in the thick region toward the complete melting recessed region during ELC. Consequently, the proposed p-channel RC-ELC Ge TFTs possessing large longitudinal grains without the perpendicular GB in the channel region exhibited a superior field-effect hole mobility of 447 cm 2 V −1 s −1 with minor performance deviation.</description><subject>Crystallization</subject><subject>excimer laser crystallization (ELC)</subject><subject>Germanium</subject><subject>Germanium (Ge)</subject><subject>Grain boundaries</subject><subject>Hole mobility</subject><subject>Iron</subject><subject>Lasers</subject><subject>location-controlled grain boundary (LCGB)</subject><subject>Seeds</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Thin film transistors</subject><subject>thin-film transistor (TFT)</subject><subject>Transistors</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA560zu9lkc5TaDyGgSD2H7WZit-Sj7qZi_fWmVLzMDMzzzsDD2C3CBBGyh3z2NBGAeiLSDBUkZ2yESmkOKpHnbARpjFwiJJfsKoQtAMZxGo-YXbqPDX8lX3W-Ma2l6I0shUAln25M21IdLei4cfsmWm1cy-euHiZv2uBC3_kQfTkTzb6ta8hHuQlDnfpD6E1dux_Tu669ZheVqQPd_PUxe5_PVtMlz18Wz9PHnFup0p5na50ZVYpM0FpUQgFoAYaMsKi0VJBZWdlSxSIRBJiVKRrESuu1MYlWcSbH7P50d-e7zz2Fvth2e98OL4vBDMQAUuBAwYmyvgvBU1XsvGuMPxQIxVFlMag8BnTxp3KI3J0ijoj-cS2USNNE_gKB3m9U</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Liao, Chan-Yu</creator><creator>Chen, Shih-Hung</creator><creator>Huang, Wen-Hsien</creator><creator>Shen, Chang-Hong</creator><creator>Shieh, Jia-Min</creator><creator>Cheng, Huang-Chung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6413-2710</orcidid><orcidid>https://orcid.org/0000-0001-5266-1052</orcidid></search><sort><creationdate>20180301</creationdate><title>High-Performance Recessed-Channel Germanium Thin-Film Transistors via Excimer Laser Crystallization</title><author>Liao, Chan-Yu ; Chen, Shih-Hung ; Huang, Wen-Hsien ; Shen, Chang-Hong ; Shieh, Jia-Min ; Cheng, Huang-Chung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-9b89a5d292eb2f2500820aea2c1583509c3fcd54262e019d71a11f88baa685493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Crystallization</topic><topic>excimer laser crystallization (ELC)</topic><topic>Germanium</topic><topic>Germanium (Ge)</topic><topic>Grain boundaries</topic><topic>Hole mobility</topic><topic>Iron</topic><topic>Lasers</topic><topic>location-controlled grain boundary (LCGB)</topic><topic>Seeds</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Thin film transistors</topic><topic>thin-film transistor (TFT)</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Chan-Yu</creatorcontrib><creatorcontrib>Chen, Shih-Hung</creatorcontrib><creatorcontrib>Huang, Wen-Hsien</creatorcontrib><creatorcontrib>Shen, Chang-Hong</creatorcontrib><creatorcontrib>Shieh, Jia-Min</creatorcontrib><creatorcontrib>Cheng, Huang-Chung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liao, Chan-Yu</au><au>Chen, Shih-Hung</au><au>Huang, Wen-Hsien</au><au>Shen, Chang-Hong</au><au>Shieh, Jia-Min</au><au>Cheng, Huang-Chung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Recessed-Channel Germanium Thin-Film Transistors via Excimer Laser Crystallization</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>39</volume><issue>3</issue><spage>367</spage><epage>370</epage><pages>367-370</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>This letter demonstrates the excimer laser crystallization (ELC) of germanium (Ge) thin films with the recessed-channel (RC) structure for high-performance p-channel Ge thin-film transistors (TFTs). Using ELC, large longitudinal grains with a single perpendicular grain boundary (GB) in the center of the recessed region were formed. This can be attributed to the lateral grain growth from un-melted Ge solid seeds in the thick region toward the complete melting recessed region during ELC. Consequently, the proposed p-channel RC-ELC Ge TFTs possessing large longitudinal grains without the perpendicular GB in the channel region exhibited a superior field-effect hole mobility of 447 cm 2 V −1 s −1 with minor performance deviation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2018.2791506</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-6413-2710</orcidid><orcidid>https://orcid.org/0000-0001-5266-1052</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2018-03, Vol.39 (3), p.367-370
issn 0741-3106
1558-0563
language eng
recordid cdi_crossref_primary_10_1109_LED_2018_2791506
source IEEE Electronic Library (IEL)
subjects Crystallization
excimer laser crystallization (ELC)
Germanium
Germanium (Ge)
Grain boundaries
Hole mobility
Iron
Lasers
location-controlled grain boundary (LCGB)
Seeds
Semiconductor devices
Silicon
Thin film transistors
thin-film transistor (TFT)
Transistors
title High-Performance Recessed-Channel Germanium Thin-Film Transistors via Excimer Laser Crystallization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A19%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Recessed-Channel%20Germanium%20Thin-Film%20Transistors%20via%20Excimer%20Laser%20Crystallization&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Liao,%20Chan-Yu&rft.date=2018-03-01&rft.volume=39&rft.issue=3&rft.spage=367&rft.epage=370&rft.pages=367-370&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2018.2791506&rft_dat=%3Cproquest_RIE%3E2010400321%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010400321&rft_id=info:pmid/&rft_ieee_id=8252776&rfr_iscdi=true