High Performance and Electro-Mechanical Stability in Small Molecule: Polymer Blend Flexible Organic Field-Effect Transistors

High-performance solution processed flexible organic field-effect transistors with 6,13(bis-triisopropylsily-lethynyl) pentacene and polystyrene blend are demonstrated with high electro-mechanical stability. For -5 V operation, field-effect mobility up to 1.1 cm 2 V -1 s -1 and threshold voltage as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2016-09, Vol.37 (9), p.1215-1218
Hauptverfasser: Bharti, Deepak, Raghuwanshi, Vivek, Varun, Ishan, Mahato, Ajay Kumar, Tiwari, Shree Prakash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1218
container_issue 9
container_start_page 1215
container_title IEEE electron device letters
container_volume 37
creator Bharti, Deepak
Raghuwanshi, Vivek
Varun, Ishan
Mahato, Ajay Kumar
Tiwari, Shree Prakash
description High-performance solution processed flexible organic field-effect transistors with 6,13(bis-triisopropylsily-lethynyl) pentacene and polystyrene blend are demonstrated with high electro-mechanical stability. For -5 V operation, field-effect mobility up to 1.1 cm 2 V -1 s -1 and threshold voltage as low as -0.1 V were obtained with high current on-off ratios of ~10 5 due to high quality dielectric-semiconductor interface developed during solvent evaporation. Stable electrical characteristics were achieved with increasing duration of mechanical strain, and after multiple cycles of tensile and compressive strain. Drain current decay of 10%, very large trapping time of ~10 8 s, and a very small threshold voltage shift of 0.3 V were observed during bias stress of 1 h, signifying low charge carrier trapping and a high quality of dielectric-semiconductor interface, which was retained largely after two days of continuous tensile strain. Moreover, after 100 cycles of tensile and compressive strain, the corresponding shift in threshold voltage due to bias stress was still ~0.5 V. Overall, a high performance and stability were demonstrated under collective effects of mechanical and electrical stress.
doi_str_mv 10.1109/LED.2016.2592943
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LED_2016_2592943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7516678</ieee_id><sourcerecordid>4160287551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-f06a04b51759f2d8e7afa91dc70f2528e2cd874cbdbca8a88a7e983ae13a4b953</originalsourceid><addsrcrecordid>eNpdkc9rFDEUx4MouFbvgpeAFy-z5ncy3rTuWmFLC63n4U3mpU3JTGoyC13wj3eWLR48vcvn8-XBh5D3nK05Z-3n3eb7WjBu1kK3olXyBVlxrV3DtJEvyYpZxRvJmXlN3tT6wBhXyqoV-XMR7-7pNZaQywiTRwrTQDcJ_Vxyc4n-HqboIdGbGfqY4nygcaI3I6REL_OC7RN-odc5HUYs9FvCxd4mfIp9QnpV7o423UZMQ7MJYVmltwWmGuucS31LXgVIFd893zPya7u5Pb9odlc_fp5_3TVeCjU3gRlgqtfc6jaIwaGFAC0fvGVBaOFQ-MFZ5fuh9-DAObDYOgnIJai-1fKMfDrtPpb8e4917sZYPaYEE-Z97biT2gitzRH9-B_6kPdlWr5bKK6EtMy0C8VOlC-51oKheyxxhHLoOOuOObolR3fM0T3nWJQPJyUi4j_cam6MdfIvsUaG7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1814237069</pqid></control><display><type>article</type><title>High Performance and Electro-Mechanical Stability in Small Molecule: Polymer Blend Flexible Organic Field-Effect Transistors</title><source>IEEE Electronic Library (IEL)</source><creator>Bharti, Deepak ; Raghuwanshi, Vivek ; Varun, Ishan ; Mahato, Ajay Kumar ; Tiwari, Shree Prakash</creator><creatorcontrib>Bharti, Deepak ; Raghuwanshi, Vivek ; Varun, Ishan ; Mahato, Ajay Kumar ; Tiwari, Shree Prakash</creatorcontrib><description>High-performance solution processed flexible organic field-effect transistors with 6,13(bis-triisopropylsily-lethynyl) pentacene and polystyrene blend are demonstrated with high electro-mechanical stability. For -5 V operation, field-effect mobility up to 1.1 cm 2 V -1 s -1 and threshold voltage as low as -0.1 V were obtained with high current on-off ratios of ~10 5 due to high quality dielectric-semiconductor interface developed during solvent evaporation. Stable electrical characteristics were achieved with increasing duration of mechanical strain, and after multiple cycles of tensile and compressive strain. Drain current decay of 10%, very large trapping time of ~10 8 s, and a very small threshold voltage shift of 0.3 V were observed during bias stress of 1 h, signifying low charge carrier trapping and a high quality of dielectric-semiconductor interface, which was retained largely after two days of continuous tensile strain. Moreover, after 100 cycles of tensile and compressive strain, the corresponding shift in threshold voltage due to bias stress was still ~0.5 V. Overall, a high performance and stability were demonstrated under collective effects of mechanical and electrical stress.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2016.2592943</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>bending ; bias-stress ; Charge carrier processes ; Compressive properties ; Crystals ; Field effect transistors ; flexible electronics ; mechanical stability ; OFETs ; Organic field-effect transistors (OFETs) ; Performance evaluation ; Polymer blends ; Stability ; Strain ; Stress ; Stresses ; Threshold voltage ; TIPS-pentacene:polymer blend ; Trapping</subject><ispartof>IEEE electron device letters, 2016-09, Vol.37 (9), p.1215-1218</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-f06a04b51759f2d8e7afa91dc70f2528e2cd874cbdbca8a88a7e983ae13a4b953</citedby><cites>FETCH-LOGICAL-c324t-f06a04b51759f2d8e7afa91dc70f2528e2cd874cbdbca8a88a7e983ae13a4b953</cites><orcidid>0000-0001-8907-6113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7516678$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7516678$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bharti, Deepak</creatorcontrib><creatorcontrib>Raghuwanshi, Vivek</creatorcontrib><creatorcontrib>Varun, Ishan</creatorcontrib><creatorcontrib>Mahato, Ajay Kumar</creatorcontrib><creatorcontrib>Tiwari, Shree Prakash</creatorcontrib><title>High Performance and Electro-Mechanical Stability in Small Molecule: Polymer Blend Flexible Organic Field-Effect Transistors</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>High-performance solution processed flexible organic field-effect transistors with 6,13(bis-triisopropylsily-lethynyl) pentacene and polystyrene blend are demonstrated with high electro-mechanical stability. For -5 V operation, field-effect mobility up to 1.1 cm 2 V -1 s -1 and threshold voltage as low as -0.1 V were obtained with high current on-off ratios of ~10 5 due to high quality dielectric-semiconductor interface developed during solvent evaporation. Stable electrical characteristics were achieved with increasing duration of mechanical strain, and after multiple cycles of tensile and compressive strain. Drain current decay of 10%, very large trapping time of ~10 8 s, and a very small threshold voltage shift of 0.3 V were observed during bias stress of 1 h, signifying low charge carrier trapping and a high quality of dielectric-semiconductor interface, which was retained largely after two days of continuous tensile strain. Moreover, after 100 cycles of tensile and compressive strain, the corresponding shift in threshold voltage due to bias stress was still ~0.5 V. Overall, a high performance and stability were demonstrated under collective effects of mechanical and electrical stress.</description><subject>bending</subject><subject>bias-stress</subject><subject>Charge carrier processes</subject><subject>Compressive properties</subject><subject>Crystals</subject><subject>Field effect transistors</subject><subject>flexible electronics</subject><subject>mechanical stability</subject><subject>OFETs</subject><subject>Organic field-effect transistors (OFETs)</subject><subject>Performance evaluation</subject><subject>Polymer blends</subject><subject>Stability</subject><subject>Strain</subject><subject>Stress</subject><subject>Stresses</subject><subject>Threshold voltage</subject><subject>TIPS-pentacene:polymer blend</subject><subject>Trapping</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc9rFDEUx4MouFbvgpeAFy-z5ncy3rTuWmFLC63n4U3mpU3JTGoyC13wj3eWLR48vcvn8-XBh5D3nK05Z-3n3eb7WjBu1kK3olXyBVlxrV3DtJEvyYpZxRvJmXlN3tT6wBhXyqoV-XMR7-7pNZaQywiTRwrTQDcJ_Vxyc4n-HqboIdGbGfqY4nygcaI3I6REL_OC7RN-odc5HUYs9FvCxd4mfIp9QnpV7o423UZMQ7MJYVmltwWmGuucS31LXgVIFd893zPya7u5Pb9odlc_fp5_3TVeCjU3gRlgqtfc6jaIwaGFAC0fvGVBaOFQ-MFZ5fuh9-DAObDYOgnIJai-1fKMfDrtPpb8e4917sZYPaYEE-Z97biT2gitzRH9-B_6kPdlWr5bKK6EtMy0C8VOlC-51oKheyxxhHLoOOuOObolR3fM0T3nWJQPJyUi4j_cam6MdfIvsUaG7w</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Bharti, Deepak</creator><creator>Raghuwanshi, Vivek</creator><creator>Varun, Ishan</creator><creator>Mahato, Ajay Kumar</creator><creator>Tiwari, Shree Prakash</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0001-8907-6113</orcidid></search><sort><creationdate>201609</creationdate><title>High Performance and Electro-Mechanical Stability in Small Molecule: Polymer Blend Flexible Organic Field-Effect Transistors</title><author>Bharti, Deepak ; Raghuwanshi, Vivek ; Varun, Ishan ; Mahato, Ajay Kumar ; Tiwari, Shree Prakash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-f06a04b51759f2d8e7afa91dc70f2528e2cd874cbdbca8a88a7e983ae13a4b953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>bending</topic><topic>bias-stress</topic><topic>Charge carrier processes</topic><topic>Compressive properties</topic><topic>Crystals</topic><topic>Field effect transistors</topic><topic>flexible electronics</topic><topic>mechanical stability</topic><topic>OFETs</topic><topic>Organic field-effect transistors (OFETs)</topic><topic>Performance evaluation</topic><topic>Polymer blends</topic><topic>Stability</topic><topic>Strain</topic><topic>Stress</topic><topic>Stresses</topic><topic>Threshold voltage</topic><topic>TIPS-pentacene:polymer blend</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bharti, Deepak</creatorcontrib><creatorcontrib>Raghuwanshi, Vivek</creatorcontrib><creatorcontrib>Varun, Ishan</creatorcontrib><creatorcontrib>Mahato, Ajay Kumar</creatorcontrib><creatorcontrib>Tiwari, Shree Prakash</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bharti, Deepak</au><au>Raghuwanshi, Vivek</au><au>Varun, Ishan</au><au>Mahato, Ajay Kumar</au><au>Tiwari, Shree Prakash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Performance and Electro-Mechanical Stability in Small Molecule: Polymer Blend Flexible Organic Field-Effect Transistors</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2016-09</date><risdate>2016</risdate><volume>37</volume><issue>9</issue><spage>1215</spage><epage>1218</epage><pages>1215-1218</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>High-performance solution processed flexible organic field-effect transistors with 6,13(bis-triisopropylsily-lethynyl) pentacene and polystyrene blend are demonstrated with high electro-mechanical stability. For -5 V operation, field-effect mobility up to 1.1 cm 2 V -1 s -1 and threshold voltage as low as -0.1 V were obtained with high current on-off ratios of ~10 5 due to high quality dielectric-semiconductor interface developed during solvent evaporation. Stable electrical characteristics were achieved with increasing duration of mechanical strain, and after multiple cycles of tensile and compressive strain. Drain current decay of 10%, very large trapping time of ~10 8 s, and a very small threshold voltage shift of 0.3 V were observed during bias stress of 1 h, signifying low charge carrier trapping and a high quality of dielectric-semiconductor interface, which was retained largely after two days of continuous tensile strain. Moreover, after 100 cycles of tensile and compressive strain, the corresponding shift in threshold voltage due to bias stress was still ~0.5 V. Overall, a high performance and stability were demonstrated under collective effects of mechanical and electrical stress.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2016.2592943</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-8907-6113</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2016-09, Vol.37 (9), p.1215-1218
issn 0741-3106
1558-0563
language eng
recordid cdi_crossref_primary_10_1109_LED_2016_2592943
source IEEE Electronic Library (IEL)
subjects bending
bias-stress
Charge carrier processes
Compressive properties
Crystals
Field effect transistors
flexible electronics
mechanical stability
OFETs
Organic field-effect transistors (OFETs)
Performance evaluation
Polymer blends
Stability
Strain
Stress
Stresses
Threshold voltage
TIPS-pentacene:polymer blend
Trapping
title High Performance and Electro-Mechanical Stability in Small Molecule: Polymer Blend Flexible Organic Field-Effect Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A37%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Performance%20and%20Electro-Mechanical%20Stability%20in%20Small%20Molecule:%20Polymer%20Blend%20Flexible%20Organic%20Field-Effect%20Transistors&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Bharti,%20Deepak&rft.date=2016-09&rft.volume=37&rft.issue=9&rft.spage=1215&rft.epage=1218&rft.pages=1215-1218&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2016.2592943&rft_dat=%3Cproquest_RIE%3E4160287551%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1814237069&rft_id=info:pmid/&rft_ieee_id=7516678&rfr_iscdi=true