CMOS-compatible micromachined edge-suspended spiral inductors with high Q-factors and self-resonance frequencies

This paper reports a new category of high-Q edge-suspended inductors (ESI) that are fabricated using CMOS-compatible micromachining techniques. This structure was designed based on the concept that the current was crowded at the edges of the conducting metal wires at high frequencies due to the prox...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2004-06, Vol.25 (6), p.363-365
Hauptverfasser: Chen, K.J., Wai Cheong Hon, Jinwen Zhang, Leung, L.L.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 365
container_issue 6
container_start_page 363
container_title IEEE electron device letters
container_volume 25
creator Chen, K.J.
Wai Cheong Hon
Jinwen Zhang
Leung, L.L.W.
description This paper reports a new category of high-Q edge-suspended inductors (ESI) that are fabricated using CMOS-compatible micromachining techniques. This structure was designed based on the concept that the current was crowded at the edges of the conducting metal wires at high frequencies due to the proximity effect. The substrate coupling and loss can be effectively suppressed by removing the silicon around and underneath the edges of the signal lines. Different from the conventional air-suspended inductors that have the inductors built on membranes or totally suspended in the air, the edge-suspended structures have the silicon underneath the center of the metal lines as the strong mechanical supports. The ESIs are fabricated using a combination of deep dry etching and anisotropic wet etching techniques that are compatible with CMOS process. For a three-turn 4.5-nH inductor, a 70% increase (from 6.8 to 11.7) in maximum Q-factor and a 57% increase (from 9.1 to 14.3 GHz) in self-resonance frequency were obtained with a 11-μm suspended edge in 25-μm-wide lines.
doi_str_mv 10.1109/LED.2004.829004
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LED_2004_829004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1302227</ieee_id><sourcerecordid>28179818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-35ebec973b7dc63a80a07c2e315bff0c7e65134dc79bcbd1ce3914446f5029ad3</originalsourceid><addsrcrecordid>eNp90cFq3DAQBmBRUugm6TmHXEwOzUm7Gsm2rGPYpElhQyhtzkKWx7GCLbuSTcnbV4sLgR56GiS-kZj5CbkAtgVgane4u91yxvJtxVUqH8gGiqKirCjFCdkwmQMVwMpP5DTGV8Ygz2W-IdP-8ekHteMwmdnVPWaDs2EcjO2cxybD5gVpXOKEvknHOLlg-sz5ZrHzGGL2281d1rmXLvtOW7PeGZ8g9i0NGEdvvMWsDfhrQW8dxnPysTV9xM9_6xl5_nr3c_9AD0_33_Y3B2pFrmYqCqzRKilq2dhSmIoZJi1HAUXdtsxKLAsQeWOlqm3dgEWh0kh52RaMK9OIM3K9vjuFMf0dZz24aLHvjcdxibpSJQeQDJL88l_JK5CqgirBq3_g67gEn6bQioMoRDIJ7VaU1hhjwFZPwQ0mvGlg-hiUTkHpY1B6DSp1XK4dDhHftWCccyn-AH9Uj9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921353183</pqid></control><display><type>article</type><title>CMOS-compatible micromachined edge-suspended spiral inductors with high Q-factors and self-resonance frequencies</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, K.J. ; Wai Cheong Hon ; Jinwen Zhang ; Leung, L.L.W.</creator><creatorcontrib>Chen, K.J. ; Wai Cheong Hon ; Jinwen Zhang ; Leung, L.L.W.</creatorcontrib><description>This paper reports a new category of high-Q edge-suspended inductors (ESI) that are fabricated using CMOS-compatible micromachining techniques. This structure was designed based on the concept that the current was crowded at the edges of the conducting metal wires at high frequencies due to the proximity effect. The substrate coupling and loss can be effectively suppressed by removing the silicon around and underneath the edges of the signal lines. Different from the conventional air-suspended inductors that have the inductors built on membranes or totally suspended in the air, the edge-suspended structures have the silicon underneath the center of the metal lines as the strong mechanical supports. The ESIs are fabricated using a combination of deep dry etching and anisotropic wet etching techniques that are compatible with CMOS process. For a three-turn 4.5-nH inductor, a 70% increase (from 6.8 to 11.7) in maximum Q-factor and a 57% increase (from 9.1 to 14.3 GHz) in self-resonance frequency were obtained with a 11-μm suspended edge in 25-μm-wide lines.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2004.829004</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anisotropy ; Biomembranes ; Categories ; Devices ; Dry etching ; Etching ; Frequency ; Inductors ; Micromachining ; Proximity effect ; Q factor ; Silicon ; Silicon substrates ; Spirals ; Wires</subject><ispartof>IEEE electron device letters, 2004-06, Vol.25 (6), p.363-365</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-35ebec973b7dc63a80a07c2e315bff0c7e65134dc79bcbd1ce3914446f5029ad3</citedby><cites>FETCH-LOGICAL-c349t-35ebec973b7dc63a80a07c2e315bff0c7e65134dc79bcbd1ce3914446f5029ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1302227$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1302227$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, K.J.</creatorcontrib><creatorcontrib>Wai Cheong Hon</creatorcontrib><creatorcontrib>Jinwen Zhang</creatorcontrib><creatorcontrib>Leung, L.L.W.</creatorcontrib><title>CMOS-compatible micromachined edge-suspended spiral inductors with high Q-factors and self-resonance frequencies</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>This paper reports a new category of high-Q edge-suspended inductors (ESI) that are fabricated using CMOS-compatible micromachining techniques. This structure was designed based on the concept that the current was crowded at the edges of the conducting metal wires at high frequencies due to the proximity effect. The substrate coupling and loss can be effectively suppressed by removing the silicon around and underneath the edges of the signal lines. Different from the conventional air-suspended inductors that have the inductors built on membranes or totally suspended in the air, the edge-suspended structures have the silicon underneath the center of the metal lines as the strong mechanical supports. The ESIs are fabricated using a combination of deep dry etching and anisotropic wet etching techniques that are compatible with CMOS process. For a three-turn 4.5-nH inductor, a 70% increase (from 6.8 to 11.7) in maximum Q-factor and a 57% increase (from 9.1 to 14.3 GHz) in self-resonance frequency were obtained with a 11-μm suspended edge in 25-μm-wide lines.</description><subject>Anisotropy</subject><subject>Biomembranes</subject><subject>Categories</subject><subject>Devices</subject><subject>Dry etching</subject><subject>Etching</subject><subject>Frequency</subject><subject>Inductors</subject><subject>Micromachining</subject><subject>Proximity effect</subject><subject>Q factor</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>Spirals</subject><subject>Wires</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90cFq3DAQBmBRUugm6TmHXEwOzUm7Gsm2rGPYpElhQyhtzkKWx7GCLbuSTcnbV4sLgR56GiS-kZj5CbkAtgVgane4u91yxvJtxVUqH8gGiqKirCjFCdkwmQMVwMpP5DTGV8Ygz2W-IdP-8ekHteMwmdnVPWaDs2EcjO2cxybD5gVpXOKEvknHOLlg-sz5ZrHzGGL2281d1rmXLvtOW7PeGZ8g9i0NGEdvvMWsDfhrQW8dxnPysTV9xM9_6xl5_nr3c_9AD0_33_Y3B2pFrmYqCqzRKilq2dhSmIoZJi1HAUXdtsxKLAsQeWOlqm3dgEWh0kh52RaMK9OIM3K9vjuFMf0dZz24aLHvjcdxibpSJQeQDJL88l_JK5CqgirBq3_g67gEn6bQioMoRDIJ7VaU1hhjwFZPwQ0mvGlg-hiUTkHpY1B6DSp1XK4dDhHftWCccyn-AH9Uj9A</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Chen, K.J.</creator><creator>Wai Cheong Hon</creator><creator>Jinwen Zhang</creator><creator>Leung, L.L.W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040601</creationdate><title>CMOS-compatible micromachined edge-suspended spiral inductors with high Q-factors and self-resonance frequencies</title><author>Chen, K.J. ; Wai Cheong Hon ; Jinwen Zhang ; Leung, L.L.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-35ebec973b7dc63a80a07c2e315bff0c7e65134dc79bcbd1ce3914446f5029ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Anisotropy</topic><topic>Biomembranes</topic><topic>Categories</topic><topic>Devices</topic><topic>Dry etching</topic><topic>Etching</topic><topic>Frequency</topic><topic>Inductors</topic><topic>Micromachining</topic><topic>Proximity effect</topic><topic>Q factor</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>Spirals</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, K.J.</creatorcontrib><creatorcontrib>Wai Cheong Hon</creatorcontrib><creatorcontrib>Jinwen Zhang</creatorcontrib><creatorcontrib>Leung, L.L.W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, K.J.</au><au>Wai Cheong Hon</au><au>Jinwen Zhang</au><au>Leung, L.L.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CMOS-compatible micromachined edge-suspended spiral inductors with high Q-factors and self-resonance frequencies</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2004-06-01</date><risdate>2004</risdate><volume>25</volume><issue>6</issue><spage>363</spage><epage>365</epage><pages>363-365</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>This paper reports a new category of high-Q edge-suspended inductors (ESI) that are fabricated using CMOS-compatible micromachining techniques. This structure was designed based on the concept that the current was crowded at the edges of the conducting metal wires at high frequencies due to the proximity effect. The substrate coupling and loss can be effectively suppressed by removing the silicon around and underneath the edges of the signal lines. Different from the conventional air-suspended inductors that have the inductors built on membranes or totally suspended in the air, the edge-suspended structures have the silicon underneath the center of the metal lines as the strong mechanical supports. The ESIs are fabricated using a combination of deep dry etching and anisotropic wet etching techniques that are compatible with CMOS process. For a three-turn 4.5-nH inductor, a 70% increase (from 6.8 to 11.7) in maximum Q-factor and a 57% increase (from 9.1 to 14.3 GHz) in self-resonance frequency were obtained with a 11-μm suspended edge in 25-μm-wide lines.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2004.829004</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2004-06, Vol.25 (6), p.363-365
issn 0741-3106
1558-0563
language eng
recordid cdi_crossref_primary_10_1109_LED_2004_829004
source IEEE Electronic Library (IEL)
subjects Anisotropy
Biomembranes
Categories
Devices
Dry etching
Etching
Frequency
Inductors
Micromachining
Proximity effect
Q factor
Silicon
Silicon substrates
Spirals
Wires
title CMOS-compatible micromachined edge-suspended spiral inductors with high Q-factors and self-resonance frequencies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T23%3A01%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CMOS-compatible%20micromachined%20edge-suspended%20spiral%20inductors%20with%20high%20Q-factors%20and%20self-resonance%20frequencies&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Chen,%20K.J.&rft.date=2004-06-01&rft.volume=25&rft.issue=6&rft.spage=363&rft.epage=365&rft.pages=363-365&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2004.829004&rft_dat=%3Cproquest_RIE%3E28179818%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921353183&rft_id=info:pmid/&rft_ieee_id=1302227&rfr_iscdi=true