CMOS-compatible micromachined edge-suspended spiral inductors with high Q-factors and self-resonance frequencies
This paper reports a new category of high-Q edge-suspended inductors (ESI) that are fabricated using CMOS-compatible micromachining techniques. This structure was designed based on the concept that the current was crowded at the edges of the conducting metal wires at high frequencies due to the prox...
Gespeichert in:
Veröffentlicht in: | IEEE electron device letters 2004-06, Vol.25 (6), p.363-365 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 365 |
---|---|
container_issue | 6 |
container_start_page | 363 |
container_title | IEEE electron device letters |
container_volume | 25 |
creator | Chen, K.J. Wai Cheong Hon Jinwen Zhang Leung, L.L.W. |
description | This paper reports a new category of high-Q edge-suspended inductors (ESI) that are fabricated using CMOS-compatible micromachining techniques. This structure was designed based on the concept that the current was crowded at the edges of the conducting metal wires at high frequencies due to the proximity effect. The substrate coupling and loss can be effectively suppressed by removing the silicon around and underneath the edges of the signal lines. Different from the conventional air-suspended inductors that have the inductors built on membranes or totally suspended in the air, the edge-suspended structures have the silicon underneath the center of the metal lines as the strong mechanical supports. The ESIs are fabricated using a combination of deep dry etching and anisotropic wet etching techniques that are compatible with CMOS process. For a three-turn 4.5-nH inductor, a 70% increase (from 6.8 to 11.7) in maximum Q-factor and a 57% increase (from 9.1 to 14.3 GHz) in self-resonance frequency were obtained with a 11-μm suspended edge in 25-μm-wide lines. |
doi_str_mv | 10.1109/LED.2004.829004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LED_2004_829004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1302227</ieee_id><sourcerecordid>28179818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-35ebec973b7dc63a80a07c2e315bff0c7e65134dc79bcbd1ce3914446f5029ad3</originalsourceid><addsrcrecordid>eNp90cFq3DAQBmBRUugm6TmHXEwOzUm7Gsm2rGPYpElhQyhtzkKWx7GCLbuSTcnbV4sLgR56GiS-kZj5CbkAtgVgane4u91yxvJtxVUqH8gGiqKirCjFCdkwmQMVwMpP5DTGV8Ygz2W-IdP-8ekHteMwmdnVPWaDs2EcjO2cxybD5gVpXOKEvknHOLlg-sz5ZrHzGGL2281d1rmXLvtOW7PeGZ8g9i0NGEdvvMWsDfhrQW8dxnPysTV9xM9_6xl5_nr3c_9AD0_33_Y3B2pFrmYqCqzRKilq2dhSmIoZJi1HAUXdtsxKLAsQeWOlqm3dgEWh0kh52RaMK9OIM3K9vjuFMf0dZz24aLHvjcdxibpSJQeQDJL88l_JK5CqgirBq3_g67gEn6bQioMoRDIJ7VaU1hhjwFZPwQ0mvGlg-hiUTkHpY1B6DSp1XK4dDhHftWCccyn-AH9Uj9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921353183</pqid></control><display><type>article</type><title>CMOS-compatible micromachined edge-suspended spiral inductors with high Q-factors and self-resonance frequencies</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, K.J. ; Wai Cheong Hon ; Jinwen Zhang ; Leung, L.L.W.</creator><creatorcontrib>Chen, K.J. ; Wai Cheong Hon ; Jinwen Zhang ; Leung, L.L.W.</creatorcontrib><description>This paper reports a new category of high-Q edge-suspended inductors (ESI) that are fabricated using CMOS-compatible micromachining techniques. This structure was designed based on the concept that the current was crowded at the edges of the conducting metal wires at high frequencies due to the proximity effect. The substrate coupling and loss can be effectively suppressed by removing the silicon around and underneath the edges of the signal lines. Different from the conventional air-suspended inductors that have the inductors built on membranes or totally suspended in the air, the edge-suspended structures have the silicon underneath the center of the metal lines as the strong mechanical supports. The ESIs are fabricated using a combination of deep dry etching and anisotropic wet etching techniques that are compatible with CMOS process. For a three-turn 4.5-nH inductor, a 70% increase (from 6.8 to 11.7) in maximum Q-factor and a 57% increase (from 9.1 to 14.3 GHz) in self-resonance frequency were obtained with a 11-μm suspended edge in 25-μm-wide lines.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2004.829004</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anisotropy ; Biomembranes ; Categories ; Devices ; Dry etching ; Etching ; Frequency ; Inductors ; Micromachining ; Proximity effect ; Q factor ; Silicon ; Silicon substrates ; Spirals ; Wires</subject><ispartof>IEEE electron device letters, 2004-06, Vol.25 (6), p.363-365</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-35ebec973b7dc63a80a07c2e315bff0c7e65134dc79bcbd1ce3914446f5029ad3</citedby><cites>FETCH-LOGICAL-c349t-35ebec973b7dc63a80a07c2e315bff0c7e65134dc79bcbd1ce3914446f5029ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1302227$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1302227$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, K.J.</creatorcontrib><creatorcontrib>Wai Cheong Hon</creatorcontrib><creatorcontrib>Jinwen Zhang</creatorcontrib><creatorcontrib>Leung, L.L.W.</creatorcontrib><title>CMOS-compatible micromachined edge-suspended spiral inductors with high Q-factors and self-resonance frequencies</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>This paper reports a new category of high-Q edge-suspended inductors (ESI) that are fabricated using CMOS-compatible micromachining techniques. This structure was designed based on the concept that the current was crowded at the edges of the conducting metal wires at high frequencies due to the proximity effect. The substrate coupling and loss can be effectively suppressed by removing the silicon around and underneath the edges of the signal lines. Different from the conventional air-suspended inductors that have the inductors built on membranes or totally suspended in the air, the edge-suspended structures have the silicon underneath the center of the metal lines as the strong mechanical supports. The ESIs are fabricated using a combination of deep dry etching and anisotropic wet etching techniques that are compatible with CMOS process. For a three-turn 4.5-nH inductor, a 70% increase (from 6.8 to 11.7) in maximum Q-factor and a 57% increase (from 9.1 to 14.3 GHz) in self-resonance frequency were obtained with a 11-μm suspended edge in 25-μm-wide lines.</description><subject>Anisotropy</subject><subject>Biomembranes</subject><subject>Categories</subject><subject>Devices</subject><subject>Dry etching</subject><subject>Etching</subject><subject>Frequency</subject><subject>Inductors</subject><subject>Micromachining</subject><subject>Proximity effect</subject><subject>Q factor</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>Spirals</subject><subject>Wires</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90cFq3DAQBmBRUugm6TmHXEwOzUm7Gsm2rGPYpElhQyhtzkKWx7GCLbuSTcnbV4sLgR56GiS-kZj5CbkAtgVgane4u91yxvJtxVUqH8gGiqKirCjFCdkwmQMVwMpP5DTGV8Ygz2W-IdP-8ekHteMwmdnVPWaDs2EcjO2cxybD5gVpXOKEvknHOLlg-sz5ZrHzGGL2281d1rmXLvtOW7PeGZ8g9i0NGEdvvMWsDfhrQW8dxnPysTV9xM9_6xl5_nr3c_9AD0_33_Y3B2pFrmYqCqzRKilq2dhSmIoZJi1HAUXdtsxKLAsQeWOlqm3dgEWh0kh52RaMK9OIM3K9vjuFMf0dZz24aLHvjcdxibpSJQeQDJL88l_JK5CqgirBq3_g67gEn6bQioMoRDIJ7VaU1hhjwFZPwQ0mvGlg-hiUTkHpY1B6DSp1XK4dDhHftWCccyn-AH9Uj9A</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Chen, K.J.</creator><creator>Wai Cheong Hon</creator><creator>Jinwen Zhang</creator><creator>Leung, L.L.W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040601</creationdate><title>CMOS-compatible micromachined edge-suspended spiral inductors with high Q-factors and self-resonance frequencies</title><author>Chen, K.J. ; Wai Cheong Hon ; Jinwen Zhang ; Leung, L.L.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-35ebec973b7dc63a80a07c2e315bff0c7e65134dc79bcbd1ce3914446f5029ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Anisotropy</topic><topic>Biomembranes</topic><topic>Categories</topic><topic>Devices</topic><topic>Dry etching</topic><topic>Etching</topic><topic>Frequency</topic><topic>Inductors</topic><topic>Micromachining</topic><topic>Proximity effect</topic><topic>Q factor</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>Spirals</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, K.J.</creatorcontrib><creatorcontrib>Wai Cheong Hon</creatorcontrib><creatorcontrib>Jinwen Zhang</creatorcontrib><creatorcontrib>Leung, L.L.W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, K.J.</au><au>Wai Cheong Hon</au><au>Jinwen Zhang</au><au>Leung, L.L.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CMOS-compatible micromachined edge-suspended spiral inductors with high Q-factors and self-resonance frequencies</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2004-06-01</date><risdate>2004</risdate><volume>25</volume><issue>6</issue><spage>363</spage><epage>365</epage><pages>363-365</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>This paper reports a new category of high-Q edge-suspended inductors (ESI) that are fabricated using CMOS-compatible micromachining techniques. This structure was designed based on the concept that the current was crowded at the edges of the conducting metal wires at high frequencies due to the proximity effect. The substrate coupling and loss can be effectively suppressed by removing the silicon around and underneath the edges of the signal lines. Different from the conventional air-suspended inductors that have the inductors built on membranes or totally suspended in the air, the edge-suspended structures have the silicon underneath the center of the metal lines as the strong mechanical supports. The ESIs are fabricated using a combination of deep dry etching and anisotropic wet etching techniques that are compatible with CMOS process. For a three-turn 4.5-nH inductor, a 70% increase (from 6.8 to 11.7) in maximum Q-factor and a 57% increase (from 9.1 to 14.3 GHz) in self-resonance frequency were obtained with a 11-μm suspended edge in 25-μm-wide lines.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2004.829004</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2004-06, Vol.25 (6), p.363-365 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LED_2004_829004 |
source | IEEE Electronic Library (IEL) |
subjects | Anisotropy Biomembranes Categories Devices Dry etching Etching Frequency Inductors Micromachining Proximity effect Q factor Silicon Silicon substrates Spirals Wires |
title | CMOS-compatible micromachined edge-suspended spiral inductors with high Q-factors and self-resonance frequencies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T23%3A01%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CMOS-compatible%20micromachined%20edge-suspended%20spiral%20inductors%20with%20high%20Q-factors%20and%20self-resonance%20frequencies&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Chen,%20K.J.&rft.date=2004-06-01&rft.volume=25&rft.issue=6&rft.spage=363&rft.epage=365&rft.pages=363-365&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2004.829004&rft_dat=%3Cproquest_RIE%3E28179818%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921353183&rft_id=info:pmid/&rft_ieee_id=1302227&rfr_iscdi=true |