Learning-Based Quantum Control for Optimal Pure State Manipulation

In this letter, we propose an adaptive critic learning approach for two classes of optimal pure state transition problems for closed quantum systems: i) when the target state is an eigenstate, and ii) when the target state is a superposition pure state. First, we describe a finite-dimensional quantu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2024, Vol.8, p.1319-1324
Hauptverfasser: Chen, Anthony Siming, Herrmann, Guido, Vamvoudakis, Kyriakos G., Vijayan, Jayadev
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1324
container_issue
container_start_page 1319
container_title IEEE control systems letters
container_volume 8
creator Chen, Anthony Siming
Herrmann, Guido
Vamvoudakis, Kyriakos G.
Vijayan, Jayadev
description In this letter, we propose an adaptive critic learning approach for two classes of optimal pure state transition problems for closed quantum systems: i) when the target state is an eigenstate, and ii) when the target state is a superposition pure state. First, we describe a finite-dimensional quantum system based on the Schrodinger equation with the action of control fields. Then, we consider the target state to be i) an eigenstate of the internal Hamiltonian and ii) an arbitrary pure state via a unitary transformation. Meanwhile, the quantum state manipulation is formulated as an optimal control problem for solving the complex partial differential Hamilton-Jacobi-Bellman (HJB) equation, of which the control solution is found using continuous-time Q-learning of an adaptive critic. Finally, numerical simulation for a spin-1/2 particle system demonstrates the effectiveness of the proposed approach.
doi_str_mv 10.1109/LCSYS.2024.3409671
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCSYS_2024_3409671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10550007</ieee_id><sourcerecordid>10_1109_LCSYS_2024_3409671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c149t-b65cbe70f250d441c322571dc580f06658d52e5ce16f71d0e5e25fbe57ac373d3</originalsourceid><addsrcrecordid>eNpNkMFKw0AURQdRsNT-gLiYH0h9M5mXSZY2qBUiVaoLV2E6eSORNAmTycK_N7VddPUuD87lchi7FbAUArL7It9-bZcSpFrGCrJEiws2k0pjJBQml2f5mi2G4QcARCo1yGzGVgUZ39btd7QyA1X8fTRtGPc879rgu4a7zvNNH-q9afjb6IlvgwnEX01b92NjQt21N-zKmWagxenO2efT40e-jorN80v-UERWqCxEuwTtjjQ4iVApJWwsJWpRWUzBQZJgWqEktCQSN72BkCS6HaE2NtZxFc-ZPPZa3w2DJ1f2ftrlf0sB5UFE-S-iPIgoTyIm6O4I1UR0BiBOFnT8B-xMWdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Learning-Based Quantum Control for Optimal Pure State Manipulation</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Anthony Siming ; Herrmann, Guido ; Vamvoudakis, Kyriakos G. ; Vijayan, Jayadev</creator><creatorcontrib>Chen, Anthony Siming ; Herrmann, Guido ; Vamvoudakis, Kyriakos G. ; Vijayan, Jayadev</creatorcontrib><description>In this letter, we propose an adaptive critic learning approach for two classes of optimal pure state transition problems for closed quantum systems: i) when the target state is an eigenstate, and ii) when the target state is a superposition pure state. First, we describe a finite-dimensional quantum system based on the Schrodinger equation with the action of control fields. Then, we consider the target state to be i) an eigenstate of the internal Hamiltonian and ii) an arbitrary pure state via a unitary transformation. Meanwhile, the quantum state manipulation is formulated as an optimal control problem for solving the complex partial differential Hamilton-Jacobi-Bellman (HJB) equation, of which the control solution is found using continuous-time Q-learning of an adaptive critic. Finally, numerical simulation for a spin-1/2 particle system demonstrates the effectiveness of the proposed approach.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2024.3409671</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive optimal control ; Control design ; Costs ; Eigenvalues and eigenfunctions ; Mathematical models ; Optimal control ; Q-learning ; quantum control ; Quantum system ; Schrödinger equation</subject><ispartof>IEEE control systems letters, 2024, Vol.8, p.1319-1324</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c149t-b65cbe70f250d441c322571dc580f06658d52e5ce16f71d0e5e25fbe57ac373d3</cites><orcidid>0000-0001-8940-7250 ; 0000-0001-5390-4538 ; 0000-0003-1978-4848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10550007$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10550007$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Anthony Siming</creatorcontrib><creatorcontrib>Herrmann, Guido</creatorcontrib><creatorcontrib>Vamvoudakis, Kyriakos G.</creatorcontrib><creatorcontrib>Vijayan, Jayadev</creatorcontrib><title>Learning-Based Quantum Control for Optimal Pure State Manipulation</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>In this letter, we propose an adaptive critic learning approach for two classes of optimal pure state transition problems for closed quantum systems: i) when the target state is an eigenstate, and ii) when the target state is a superposition pure state. First, we describe a finite-dimensional quantum system based on the Schrodinger equation with the action of control fields. Then, we consider the target state to be i) an eigenstate of the internal Hamiltonian and ii) an arbitrary pure state via a unitary transformation. Meanwhile, the quantum state manipulation is formulated as an optimal control problem for solving the complex partial differential Hamilton-Jacobi-Bellman (HJB) equation, of which the control solution is found using continuous-time Q-learning of an adaptive critic. Finally, numerical simulation for a spin-1/2 particle system demonstrates the effectiveness of the proposed approach.</description><subject>Adaptive optimal control</subject><subject>Control design</subject><subject>Costs</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Q-learning</subject><subject>quantum control</subject><subject>Quantum system</subject><subject>Schrödinger equation</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFKw0AURQdRsNT-gLiYH0h9M5mXSZY2qBUiVaoLV2E6eSORNAmTycK_N7VddPUuD87lchi7FbAUArL7It9-bZcSpFrGCrJEiws2k0pjJBQml2f5mi2G4QcARCo1yGzGVgUZ39btd7QyA1X8fTRtGPc879rgu4a7zvNNH-q9afjb6IlvgwnEX01b92NjQt21N-zKmWagxenO2efT40e-jorN80v-UERWqCxEuwTtjjQ4iVApJWwsJWpRWUzBQZJgWqEktCQSN72BkCS6HaE2NtZxFc-ZPPZa3w2DJ1f2ftrlf0sB5UFE-S-iPIgoTyIm6O4I1UR0BiBOFnT8B-xMWdw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Chen, Anthony Siming</creator><creator>Herrmann, Guido</creator><creator>Vamvoudakis, Kyriakos G.</creator><creator>Vijayan, Jayadev</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8940-7250</orcidid><orcidid>https://orcid.org/0000-0001-5390-4538</orcidid><orcidid>https://orcid.org/0000-0003-1978-4848</orcidid></search><sort><creationdate>2024</creationdate><title>Learning-Based Quantum Control for Optimal Pure State Manipulation</title><author>Chen, Anthony Siming ; Herrmann, Guido ; Vamvoudakis, Kyriakos G. ; Vijayan, Jayadev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c149t-b65cbe70f250d441c322571dc580f06658d52e5ce16f71d0e5e25fbe57ac373d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive optimal control</topic><topic>Control design</topic><topic>Costs</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Q-learning</topic><topic>quantum control</topic><topic>Quantum system</topic><topic>Schrödinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Anthony Siming</creatorcontrib><creatorcontrib>Herrmann, Guido</creatorcontrib><creatorcontrib>Vamvoudakis, Kyriakos G.</creatorcontrib><creatorcontrib>Vijayan, Jayadev</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Anthony Siming</au><au>Herrmann, Guido</au><au>Vamvoudakis, Kyriakos G.</au><au>Vijayan, Jayadev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning-Based Quantum Control for Optimal Pure State Manipulation</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2024</date><risdate>2024</risdate><volume>8</volume><spage>1319</spage><epage>1324</epage><pages>1319-1324</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>In this letter, we propose an adaptive critic learning approach for two classes of optimal pure state transition problems for closed quantum systems: i) when the target state is an eigenstate, and ii) when the target state is a superposition pure state. First, we describe a finite-dimensional quantum system based on the Schrodinger equation with the action of control fields. Then, we consider the target state to be i) an eigenstate of the internal Hamiltonian and ii) an arbitrary pure state via a unitary transformation. Meanwhile, the quantum state manipulation is formulated as an optimal control problem for solving the complex partial differential Hamilton-Jacobi-Bellman (HJB) equation, of which the control solution is found using continuous-time Q-learning of an adaptive critic. Finally, numerical simulation for a spin-1/2 particle system demonstrates the effectiveness of the proposed approach.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2024.3409671</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8940-7250</orcidid><orcidid>https://orcid.org/0000-0001-5390-4538</orcidid><orcidid>https://orcid.org/0000-0003-1978-4848</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2475-1456
ispartof IEEE control systems letters, 2024, Vol.8, p.1319-1324
issn 2475-1456
2475-1456
language eng
recordid cdi_crossref_primary_10_1109_LCSYS_2024_3409671
source IEEE Electronic Library (IEL)
subjects Adaptive optimal control
Control design
Costs
Eigenvalues and eigenfunctions
Mathematical models
Optimal control
Q-learning
quantum control
Quantum system
Schrödinger equation
title Learning-Based Quantum Control for Optimal Pure State Manipulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A17%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning-Based%20Quantum%20Control%20for%20Optimal%20Pure%20State%20Manipulation&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=Chen,%20Anthony%20Siming&rft.date=2024&rft.volume=8&rft.spage=1319&rft.epage=1324&rft.pages=1319-1324&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2024.3409671&rft_dat=%3Ccrossref_RIE%3E10_1109_LCSYS_2024_3409671%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10550007&rfr_iscdi=true