Learning-Based Quantum Control for Optimal Pure State Manipulation
In this letter, we propose an adaptive critic learning approach for two classes of optimal pure state transition problems for closed quantum systems: i) when the target state is an eigenstate, and ii) when the target state is a superposition pure state. First, we describe a finite-dimensional quantu...
Gespeichert in:
Veröffentlicht in: | IEEE control systems letters 2024, Vol.8, p.1319-1324 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1324 |
---|---|
container_issue | |
container_start_page | 1319 |
container_title | IEEE control systems letters |
container_volume | 8 |
creator | Chen, Anthony Siming Herrmann, Guido Vamvoudakis, Kyriakos G. Vijayan, Jayadev |
description | In this letter, we propose an adaptive critic learning approach for two classes of optimal pure state transition problems for closed quantum systems: i) when the target state is an eigenstate, and ii) when the target state is a superposition pure state. First, we describe a finite-dimensional quantum system based on the Schrodinger equation with the action of control fields. Then, we consider the target state to be i) an eigenstate of the internal Hamiltonian and ii) an arbitrary pure state via a unitary transformation. Meanwhile, the quantum state manipulation is formulated as an optimal control problem for solving the complex partial differential Hamilton-Jacobi-Bellman (HJB) equation, of which the control solution is found using continuous-time Q-learning of an adaptive critic. Finally, numerical simulation for a spin-1/2 particle system demonstrates the effectiveness of the proposed approach. |
doi_str_mv | 10.1109/LCSYS.2024.3409671 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCSYS_2024_3409671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10550007</ieee_id><sourcerecordid>10_1109_LCSYS_2024_3409671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c149t-b65cbe70f250d441c322571dc580f06658d52e5ce16f71d0e5e25fbe57ac373d3</originalsourceid><addsrcrecordid>eNpNkMFKw0AURQdRsNT-gLiYH0h9M5mXSZY2qBUiVaoLV2E6eSORNAmTycK_N7VddPUuD87lchi7FbAUArL7It9-bZcSpFrGCrJEiws2k0pjJBQml2f5mi2G4QcARCo1yGzGVgUZ39btd7QyA1X8fTRtGPc879rgu4a7zvNNH-q9afjb6IlvgwnEX01b92NjQt21N-zKmWagxenO2efT40e-jorN80v-UERWqCxEuwTtjjQ4iVApJWwsJWpRWUzBQZJgWqEktCQSN72BkCS6HaE2NtZxFc-ZPPZa3w2DJ1f2ftrlf0sB5UFE-S-iPIgoTyIm6O4I1UR0BiBOFnT8B-xMWdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Learning-Based Quantum Control for Optimal Pure State Manipulation</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Anthony Siming ; Herrmann, Guido ; Vamvoudakis, Kyriakos G. ; Vijayan, Jayadev</creator><creatorcontrib>Chen, Anthony Siming ; Herrmann, Guido ; Vamvoudakis, Kyriakos G. ; Vijayan, Jayadev</creatorcontrib><description>In this letter, we propose an adaptive critic learning approach for two classes of optimal pure state transition problems for closed quantum systems: i) when the target state is an eigenstate, and ii) when the target state is a superposition pure state. First, we describe a finite-dimensional quantum system based on the Schrodinger equation with the action of control fields. Then, we consider the target state to be i) an eigenstate of the internal Hamiltonian and ii) an arbitrary pure state via a unitary transformation. Meanwhile, the quantum state manipulation is formulated as an optimal control problem for solving the complex partial differential Hamilton-Jacobi-Bellman (HJB) equation, of which the control solution is found using continuous-time Q-learning of an adaptive critic. Finally, numerical simulation for a spin-1/2 particle system demonstrates the effectiveness of the proposed approach.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2024.3409671</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive optimal control ; Control design ; Costs ; Eigenvalues and eigenfunctions ; Mathematical models ; Optimal control ; Q-learning ; quantum control ; Quantum system ; Schrödinger equation</subject><ispartof>IEEE control systems letters, 2024, Vol.8, p.1319-1324</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c149t-b65cbe70f250d441c322571dc580f06658d52e5ce16f71d0e5e25fbe57ac373d3</cites><orcidid>0000-0001-8940-7250 ; 0000-0001-5390-4538 ; 0000-0003-1978-4848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10550007$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10550007$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Anthony Siming</creatorcontrib><creatorcontrib>Herrmann, Guido</creatorcontrib><creatorcontrib>Vamvoudakis, Kyriakos G.</creatorcontrib><creatorcontrib>Vijayan, Jayadev</creatorcontrib><title>Learning-Based Quantum Control for Optimal Pure State Manipulation</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>In this letter, we propose an adaptive critic learning approach for two classes of optimal pure state transition problems for closed quantum systems: i) when the target state is an eigenstate, and ii) when the target state is a superposition pure state. First, we describe a finite-dimensional quantum system based on the Schrodinger equation with the action of control fields. Then, we consider the target state to be i) an eigenstate of the internal Hamiltonian and ii) an arbitrary pure state via a unitary transformation. Meanwhile, the quantum state manipulation is formulated as an optimal control problem for solving the complex partial differential Hamilton-Jacobi-Bellman (HJB) equation, of which the control solution is found using continuous-time Q-learning of an adaptive critic. Finally, numerical simulation for a spin-1/2 particle system demonstrates the effectiveness of the proposed approach.</description><subject>Adaptive optimal control</subject><subject>Control design</subject><subject>Costs</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Q-learning</subject><subject>quantum control</subject><subject>Quantum system</subject><subject>Schrödinger equation</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFKw0AURQdRsNT-gLiYH0h9M5mXSZY2qBUiVaoLV2E6eSORNAmTycK_N7VddPUuD87lchi7FbAUArL7It9-bZcSpFrGCrJEiws2k0pjJBQml2f5mi2G4QcARCo1yGzGVgUZ39btd7QyA1X8fTRtGPc879rgu4a7zvNNH-q9afjb6IlvgwnEX01b92NjQt21N-zKmWagxenO2efT40e-jorN80v-UERWqCxEuwTtjjQ4iVApJWwsJWpRWUzBQZJgWqEktCQSN72BkCS6HaE2NtZxFc-ZPPZa3w2DJ1f2ftrlf0sB5UFE-S-iPIgoTyIm6O4I1UR0BiBOFnT8B-xMWdw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Chen, Anthony Siming</creator><creator>Herrmann, Guido</creator><creator>Vamvoudakis, Kyriakos G.</creator><creator>Vijayan, Jayadev</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8940-7250</orcidid><orcidid>https://orcid.org/0000-0001-5390-4538</orcidid><orcidid>https://orcid.org/0000-0003-1978-4848</orcidid></search><sort><creationdate>2024</creationdate><title>Learning-Based Quantum Control for Optimal Pure State Manipulation</title><author>Chen, Anthony Siming ; Herrmann, Guido ; Vamvoudakis, Kyriakos G. ; Vijayan, Jayadev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c149t-b65cbe70f250d441c322571dc580f06658d52e5ce16f71d0e5e25fbe57ac373d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive optimal control</topic><topic>Control design</topic><topic>Costs</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Q-learning</topic><topic>quantum control</topic><topic>Quantum system</topic><topic>Schrödinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Anthony Siming</creatorcontrib><creatorcontrib>Herrmann, Guido</creatorcontrib><creatorcontrib>Vamvoudakis, Kyriakos G.</creatorcontrib><creatorcontrib>Vijayan, Jayadev</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Anthony Siming</au><au>Herrmann, Guido</au><au>Vamvoudakis, Kyriakos G.</au><au>Vijayan, Jayadev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning-Based Quantum Control for Optimal Pure State Manipulation</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2024</date><risdate>2024</risdate><volume>8</volume><spage>1319</spage><epage>1324</epage><pages>1319-1324</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>In this letter, we propose an adaptive critic learning approach for two classes of optimal pure state transition problems for closed quantum systems: i) when the target state is an eigenstate, and ii) when the target state is a superposition pure state. First, we describe a finite-dimensional quantum system based on the Schrodinger equation with the action of control fields. Then, we consider the target state to be i) an eigenstate of the internal Hamiltonian and ii) an arbitrary pure state via a unitary transformation. Meanwhile, the quantum state manipulation is formulated as an optimal control problem for solving the complex partial differential Hamilton-Jacobi-Bellman (HJB) equation, of which the control solution is found using continuous-time Q-learning of an adaptive critic. Finally, numerical simulation for a spin-1/2 particle system demonstrates the effectiveness of the proposed approach.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2024.3409671</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8940-7250</orcidid><orcidid>https://orcid.org/0000-0001-5390-4538</orcidid><orcidid>https://orcid.org/0000-0003-1978-4848</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2475-1456 |
ispartof | IEEE control systems letters, 2024, Vol.8, p.1319-1324 |
issn | 2475-1456 2475-1456 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LCSYS_2024_3409671 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive optimal control Control design Costs Eigenvalues and eigenfunctions Mathematical models Optimal control Q-learning quantum control Quantum system Schrödinger equation |
title | Learning-Based Quantum Control for Optimal Pure State Manipulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A17%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning-Based%20Quantum%20Control%20for%20Optimal%20Pure%20State%20Manipulation&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=Chen,%20Anthony%20Siming&rft.date=2024&rft.volume=8&rft.spage=1319&rft.epage=1324&rft.pages=1319-1324&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2024.3409671&rft_dat=%3Ccrossref_RIE%3E10_1109_LCSYS_2024_3409671%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10550007&rfr_iscdi=true |