Koopman Operator Approximation under Negative Imaginary Constraints
Nonlinear Negative Imaginary (NI) systems arise in various engineering applications, such as controlling flexible structures and air vehicles. However, unlike linear NI systems, their theory is not well-developed. In this paper, we propose a data-driven method for learning a lifted linear NI dynamic...
Gespeichert in:
Veröffentlicht in: | IEEE control systems letters 2023-01, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE control systems letters |
container_volume | |
creator | Mabrok, Mohamed A. Aksikas, Ilyasse Meskin, Nader |
description | Nonlinear Negative Imaginary (NI) systems arise in various engineering applications, such as controlling flexible structures and air vehicles. However, unlike linear NI systems, their theory is not well-developed. In this paper, we propose a data-driven method for learning a lifted linear NI dynamics that approximates a nonlinear dynamical system using the Koopman theory, which is an operator that captures the evolution of nonlinear systems in a lifted high-dimensional space. The linear matrix inequality that characterizes the NI property is embedded in the Koopman framework, which results in a non-convex optimization problem. To overcome the numerical challenges of solving a non-convex optimization problem with nonlinear constraints, the optimization variables are reformatted in order to convert the optimization problem into a convex one with the new variables. We compare our method with local linearization techniques and show that our method can accurately capture the nonlinear dynamics and achieve better control performance. Our method provides a numerically tractable solution for learning the Koopman operator under NI constraints for nonlinear NI systems and opens up new possibilities for applying linear control techniques to nonlinear NI systems without linearization approximations. |
doi_str_mv | 10.1109/LCSYS.2023.3290195 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCSYS_2023_3290195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10168943</ieee_id><sourcerecordid>10_1109_LCSYS_2023_3290195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-44070fd38eebc784e004a2dabd3b14c5430c2d4447dd9665d1c63cfebe02d1403</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EElXpDyAW-YGUsT15LauIR0VEF4UFq8ixJ1UQsSM7IPr3pLSLrubO4lxdHcZuOSw5h-K-Krcf26UAIZdSFMCL5ILNBGZJzDFJL8_yNVuE8AkAPBcZiGLGyhfnhl7ZaDOQV6Pz0WoYvPvtejV2zkbf1pCPXmk3vT8UrXu166zy-6h0NoxedXYMN-yqVV-BFqc7Z--PD2_lc1xtntblqoq1SOUYI0IGrZE5UaOzHAkAlTCqMbLhqBOUoIVBxMyYIk0Tw3UqdUsNgTAcQc6ZOPZq70Lw1NaDn3b6fc2hPpio_03UBxP1ycQE3R2hjojOAJ7mBUr5B0cGW3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Koopman Operator Approximation under Negative Imaginary Constraints</title><source>IEEE Electronic Library (IEL)</source><creator>Mabrok, Mohamed A. ; Aksikas, Ilyasse ; Meskin, Nader</creator><creatorcontrib>Mabrok, Mohamed A. ; Aksikas, Ilyasse ; Meskin, Nader</creatorcontrib><description>Nonlinear Negative Imaginary (NI) systems arise in various engineering applications, such as controlling flexible structures and air vehicles. However, unlike linear NI systems, their theory is not well-developed. In this paper, we propose a data-driven method for learning a lifted linear NI dynamics that approximates a nonlinear dynamical system using the Koopman theory, which is an operator that captures the evolution of nonlinear systems in a lifted high-dimensional space. The linear matrix inequality that characterizes the NI property is embedded in the Koopman framework, which results in a non-convex optimization problem. To overcome the numerical challenges of solving a non-convex optimization problem with nonlinear constraints, the optimization variables are reformatted in order to convert the optimization problem into a convex one with the new variables. We compare our method with local linearization techniques and show that our method can accurately capture the nonlinear dynamics and achieve better control performance. Our method provides a numerically tractable solution for learning the Koopman operator under NI constraints for nonlinear NI systems and opens up new possibilities for applying linear control techniques to nonlinear NI systems without linearization approximations.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2023.3290195</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Koopman Operator ; Linear systems ; Negative Imaginary Systems ; Nonlinear dynamical systems ; Numerical stability ; Optimization ; Robust stability ; System Identification ; Transfer functions ; Vehicle dynamics</subject><ispartof>IEEE control systems letters, 2023-01, p.1-1</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c263t-44070fd38eebc784e004a2dabd3b14c5430c2d4447dd9665d1c63cfebe02d1403</cites><orcidid>0000-0003-4561-4439 ; 0000-0003-3638-4424 ; 0000-0003-3098-9369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10168943$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10168943$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mabrok, Mohamed A.</creatorcontrib><creatorcontrib>Aksikas, Ilyasse</creatorcontrib><creatorcontrib>Meskin, Nader</creatorcontrib><title>Koopman Operator Approximation under Negative Imaginary Constraints</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>Nonlinear Negative Imaginary (NI) systems arise in various engineering applications, such as controlling flexible structures and air vehicles. However, unlike linear NI systems, their theory is not well-developed. In this paper, we propose a data-driven method for learning a lifted linear NI dynamics that approximates a nonlinear dynamical system using the Koopman theory, which is an operator that captures the evolution of nonlinear systems in a lifted high-dimensional space. The linear matrix inequality that characterizes the NI property is embedded in the Koopman framework, which results in a non-convex optimization problem. To overcome the numerical challenges of solving a non-convex optimization problem with nonlinear constraints, the optimization variables are reformatted in order to convert the optimization problem into a convex one with the new variables. We compare our method with local linearization techniques and show that our method can accurately capture the nonlinear dynamics and achieve better control performance. Our method provides a numerically tractable solution for learning the Koopman operator under NI constraints for nonlinear NI systems and opens up new possibilities for applying linear control techniques to nonlinear NI systems without linearization approximations.</description><subject>Koopman Operator</subject><subject>Linear systems</subject><subject>Negative Imaginary Systems</subject><subject>Nonlinear dynamical systems</subject><subject>Numerical stability</subject><subject>Optimization</subject><subject>Robust stability</subject><subject>System Identification</subject><subject>Transfer functions</subject><subject>Vehicle dynamics</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EElXpDyAW-YGUsT15LauIR0VEF4UFq8ixJ1UQsSM7IPr3pLSLrubO4lxdHcZuOSw5h-K-Krcf26UAIZdSFMCL5ILNBGZJzDFJL8_yNVuE8AkAPBcZiGLGyhfnhl7ZaDOQV6Pz0WoYvPvtejV2zkbf1pCPXmk3vT8UrXu166zy-6h0NoxedXYMN-yqVV-BFqc7Z--PD2_lc1xtntblqoq1SOUYI0IGrZE5UaOzHAkAlTCqMbLhqBOUoIVBxMyYIk0Tw3UqdUsNgTAcQc6ZOPZq70Lw1NaDn3b6fc2hPpio_03UBxP1ycQE3R2hjojOAJ7mBUr5B0cGW3A</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Mabrok, Mohamed A.</creator><creator>Aksikas, Ilyasse</creator><creator>Meskin, Nader</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4561-4439</orcidid><orcidid>https://orcid.org/0000-0003-3638-4424</orcidid><orcidid>https://orcid.org/0000-0003-3098-9369</orcidid></search><sort><creationdate>20230101</creationdate><title>Koopman Operator Approximation under Negative Imaginary Constraints</title><author>Mabrok, Mohamed A. ; Aksikas, Ilyasse ; Meskin, Nader</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-44070fd38eebc784e004a2dabd3b14c5430c2d4447dd9665d1c63cfebe02d1403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Koopman Operator</topic><topic>Linear systems</topic><topic>Negative Imaginary Systems</topic><topic>Nonlinear dynamical systems</topic><topic>Numerical stability</topic><topic>Optimization</topic><topic>Robust stability</topic><topic>System Identification</topic><topic>Transfer functions</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mabrok, Mohamed A.</creatorcontrib><creatorcontrib>Aksikas, Ilyasse</creatorcontrib><creatorcontrib>Meskin, Nader</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mabrok, Mohamed A.</au><au>Aksikas, Ilyasse</au><au>Meskin, Nader</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Koopman Operator Approximation under Negative Imaginary Constraints</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2023-01-01</date><risdate>2023</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>Nonlinear Negative Imaginary (NI) systems arise in various engineering applications, such as controlling flexible structures and air vehicles. However, unlike linear NI systems, their theory is not well-developed. In this paper, we propose a data-driven method for learning a lifted linear NI dynamics that approximates a nonlinear dynamical system using the Koopman theory, which is an operator that captures the evolution of nonlinear systems in a lifted high-dimensional space. The linear matrix inequality that characterizes the NI property is embedded in the Koopman framework, which results in a non-convex optimization problem. To overcome the numerical challenges of solving a non-convex optimization problem with nonlinear constraints, the optimization variables are reformatted in order to convert the optimization problem into a convex one with the new variables. We compare our method with local linearization techniques and show that our method can accurately capture the nonlinear dynamics and achieve better control performance. Our method provides a numerically tractable solution for learning the Koopman operator under NI constraints for nonlinear NI systems and opens up new possibilities for applying linear control techniques to nonlinear NI systems without linearization approximations.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2023.3290195</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4561-4439</orcidid><orcidid>https://orcid.org/0000-0003-3638-4424</orcidid><orcidid>https://orcid.org/0000-0003-3098-9369</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2475-1456 |
ispartof | IEEE control systems letters, 2023-01, p.1-1 |
issn | 2475-1456 2475-1456 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LCSYS_2023_3290195 |
source | IEEE Electronic Library (IEL) |
subjects | Koopman Operator Linear systems Negative Imaginary Systems Nonlinear dynamical systems Numerical stability Optimization Robust stability System Identification Transfer functions Vehicle dynamics |
title | Koopman Operator Approximation under Negative Imaginary Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A44%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Koopman%20Operator%20Approximation%20under%20Negative%20Imaginary%20Constraints&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=Mabrok,%20Mohamed%20A.&rft.date=2023-01-01&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2023.3290195&rft_dat=%3Ccrossref_RIE%3E10_1109_LCSYS_2023_3290195%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10168943&rfr_iscdi=true |