Koopman Operator Approximation under Negative Imaginary Constraints

Nonlinear Negative Imaginary (NI) systems arise in various engineering applications, such as controlling flexible structures and air vehicles. However, unlike linear NI systems, their theory is not well-developed. In this paper, we propose a data-driven method for learning a lifted linear NI dynamic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2023-01, p.1-1
Hauptverfasser: Mabrok, Mohamed A., Aksikas, Ilyasse, Meskin, Nader
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE control systems letters
container_volume
creator Mabrok, Mohamed A.
Aksikas, Ilyasse
Meskin, Nader
description Nonlinear Negative Imaginary (NI) systems arise in various engineering applications, such as controlling flexible structures and air vehicles. However, unlike linear NI systems, their theory is not well-developed. In this paper, we propose a data-driven method for learning a lifted linear NI dynamics that approximates a nonlinear dynamical system using the Koopman theory, which is an operator that captures the evolution of nonlinear systems in a lifted high-dimensional space. The linear matrix inequality that characterizes the NI property is embedded in the Koopman framework, which results in a non-convex optimization problem. To overcome the numerical challenges of solving a non-convex optimization problem with nonlinear constraints, the optimization variables are reformatted in order to convert the optimization problem into a convex one with the new variables. We compare our method with local linearization techniques and show that our method can accurately capture the nonlinear dynamics and achieve better control performance. Our method provides a numerically tractable solution for learning the Koopman operator under NI constraints for nonlinear NI systems and opens up new possibilities for applying linear control techniques to nonlinear NI systems without linearization approximations.
doi_str_mv 10.1109/LCSYS.2023.3290195
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCSYS_2023_3290195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10168943</ieee_id><sourcerecordid>10_1109_LCSYS_2023_3290195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-44070fd38eebc784e004a2dabd3b14c5430c2d4447dd9665d1c63cfebe02d1403</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EElXpDyAW-YGUsT15LauIR0VEF4UFq8ixJ1UQsSM7IPr3pLSLrubO4lxdHcZuOSw5h-K-Krcf26UAIZdSFMCL5ILNBGZJzDFJL8_yNVuE8AkAPBcZiGLGyhfnhl7ZaDOQV6Pz0WoYvPvtejV2zkbf1pCPXmk3vT8UrXu166zy-6h0NoxedXYMN-yqVV-BFqc7Z--PD2_lc1xtntblqoq1SOUYI0IGrZE5UaOzHAkAlTCqMbLhqBOUoIVBxMyYIk0Tw3UqdUsNgTAcQc6ZOPZq70Lw1NaDn3b6fc2hPpio_03UBxP1ycQE3R2hjojOAJ7mBUr5B0cGW3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Koopman Operator Approximation under Negative Imaginary Constraints</title><source>IEEE Electronic Library (IEL)</source><creator>Mabrok, Mohamed A. ; Aksikas, Ilyasse ; Meskin, Nader</creator><creatorcontrib>Mabrok, Mohamed A. ; Aksikas, Ilyasse ; Meskin, Nader</creatorcontrib><description>Nonlinear Negative Imaginary (NI) systems arise in various engineering applications, such as controlling flexible structures and air vehicles. However, unlike linear NI systems, their theory is not well-developed. In this paper, we propose a data-driven method for learning a lifted linear NI dynamics that approximates a nonlinear dynamical system using the Koopman theory, which is an operator that captures the evolution of nonlinear systems in a lifted high-dimensional space. The linear matrix inequality that characterizes the NI property is embedded in the Koopman framework, which results in a non-convex optimization problem. To overcome the numerical challenges of solving a non-convex optimization problem with nonlinear constraints, the optimization variables are reformatted in order to convert the optimization problem into a convex one with the new variables. We compare our method with local linearization techniques and show that our method can accurately capture the nonlinear dynamics and achieve better control performance. Our method provides a numerically tractable solution for learning the Koopman operator under NI constraints for nonlinear NI systems and opens up new possibilities for applying linear control techniques to nonlinear NI systems without linearization approximations.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2023.3290195</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Koopman Operator ; Linear systems ; Negative Imaginary Systems ; Nonlinear dynamical systems ; Numerical stability ; Optimization ; Robust stability ; System Identification ; Transfer functions ; Vehicle dynamics</subject><ispartof>IEEE control systems letters, 2023-01, p.1-1</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c263t-44070fd38eebc784e004a2dabd3b14c5430c2d4447dd9665d1c63cfebe02d1403</cites><orcidid>0000-0003-4561-4439 ; 0000-0003-3638-4424 ; 0000-0003-3098-9369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10168943$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10168943$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mabrok, Mohamed A.</creatorcontrib><creatorcontrib>Aksikas, Ilyasse</creatorcontrib><creatorcontrib>Meskin, Nader</creatorcontrib><title>Koopman Operator Approximation under Negative Imaginary Constraints</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>Nonlinear Negative Imaginary (NI) systems arise in various engineering applications, such as controlling flexible structures and air vehicles. However, unlike linear NI systems, their theory is not well-developed. In this paper, we propose a data-driven method for learning a lifted linear NI dynamics that approximates a nonlinear dynamical system using the Koopman theory, which is an operator that captures the evolution of nonlinear systems in a lifted high-dimensional space. The linear matrix inequality that characterizes the NI property is embedded in the Koopman framework, which results in a non-convex optimization problem. To overcome the numerical challenges of solving a non-convex optimization problem with nonlinear constraints, the optimization variables are reformatted in order to convert the optimization problem into a convex one with the new variables. We compare our method with local linearization techniques and show that our method can accurately capture the nonlinear dynamics and achieve better control performance. Our method provides a numerically tractable solution for learning the Koopman operator under NI constraints for nonlinear NI systems and opens up new possibilities for applying linear control techniques to nonlinear NI systems without linearization approximations.</description><subject>Koopman Operator</subject><subject>Linear systems</subject><subject>Negative Imaginary Systems</subject><subject>Nonlinear dynamical systems</subject><subject>Numerical stability</subject><subject>Optimization</subject><subject>Robust stability</subject><subject>System Identification</subject><subject>Transfer functions</subject><subject>Vehicle dynamics</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EElXpDyAW-YGUsT15LauIR0VEF4UFq8ixJ1UQsSM7IPr3pLSLrubO4lxdHcZuOSw5h-K-Krcf26UAIZdSFMCL5ILNBGZJzDFJL8_yNVuE8AkAPBcZiGLGyhfnhl7ZaDOQV6Pz0WoYvPvtejV2zkbf1pCPXmk3vT8UrXu166zy-6h0NoxedXYMN-yqVV-BFqc7Z--PD2_lc1xtntblqoq1SOUYI0IGrZE5UaOzHAkAlTCqMbLhqBOUoIVBxMyYIk0Tw3UqdUsNgTAcQc6ZOPZq70Lw1NaDn3b6fc2hPpio_03UBxP1ycQE3R2hjojOAJ7mBUr5B0cGW3A</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Mabrok, Mohamed A.</creator><creator>Aksikas, Ilyasse</creator><creator>Meskin, Nader</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4561-4439</orcidid><orcidid>https://orcid.org/0000-0003-3638-4424</orcidid><orcidid>https://orcid.org/0000-0003-3098-9369</orcidid></search><sort><creationdate>20230101</creationdate><title>Koopman Operator Approximation under Negative Imaginary Constraints</title><author>Mabrok, Mohamed A. ; Aksikas, Ilyasse ; Meskin, Nader</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-44070fd38eebc784e004a2dabd3b14c5430c2d4447dd9665d1c63cfebe02d1403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Koopman Operator</topic><topic>Linear systems</topic><topic>Negative Imaginary Systems</topic><topic>Nonlinear dynamical systems</topic><topic>Numerical stability</topic><topic>Optimization</topic><topic>Robust stability</topic><topic>System Identification</topic><topic>Transfer functions</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mabrok, Mohamed A.</creatorcontrib><creatorcontrib>Aksikas, Ilyasse</creatorcontrib><creatorcontrib>Meskin, Nader</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mabrok, Mohamed A.</au><au>Aksikas, Ilyasse</au><au>Meskin, Nader</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Koopman Operator Approximation under Negative Imaginary Constraints</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2023-01-01</date><risdate>2023</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>Nonlinear Negative Imaginary (NI) systems arise in various engineering applications, such as controlling flexible structures and air vehicles. However, unlike linear NI systems, their theory is not well-developed. In this paper, we propose a data-driven method for learning a lifted linear NI dynamics that approximates a nonlinear dynamical system using the Koopman theory, which is an operator that captures the evolution of nonlinear systems in a lifted high-dimensional space. The linear matrix inequality that characterizes the NI property is embedded in the Koopman framework, which results in a non-convex optimization problem. To overcome the numerical challenges of solving a non-convex optimization problem with nonlinear constraints, the optimization variables are reformatted in order to convert the optimization problem into a convex one with the new variables. We compare our method with local linearization techniques and show that our method can accurately capture the nonlinear dynamics and achieve better control performance. Our method provides a numerically tractable solution for learning the Koopman operator under NI constraints for nonlinear NI systems and opens up new possibilities for applying linear control techniques to nonlinear NI systems without linearization approximations.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2023.3290195</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4561-4439</orcidid><orcidid>https://orcid.org/0000-0003-3638-4424</orcidid><orcidid>https://orcid.org/0000-0003-3098-9369</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2475-1456
ispartof IEEE control systems letters, 2023-01, p.1-1
issn 2475-1456
2475-1456
language eng
recordid cdi_crossref_primary_10_1109_LCSYS_2023_3290195
source IEEE Electronic Library (IEL)
subjects Koopman Operator
Linear systems
Negative Imaginary Systems
Nonlinear dynamical systems
Numerical stability
Optimization
Robust stability
System Identification
Transfer functions
Vehicle dynamics
title Koopman Operator Approximation under Negative Imaginary Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A44%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Koopman%20Operator%20Approximation%20under%20Negative%20Imaginary%20Constraints&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=Mabrok,%20Mohamed%20A.&rft.date=2023-01-01&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2023.3290195&rft_dat=%3Ccrossref_RIE%3E10_1109_LCSYS_2023_3290195%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10168943&rfr_iscdi=true