Inexact-Uzawa Primal-Dual Solver for Embedded Model Predictive Control

In this letter, we propose an inexact-Uzawa solver for embedded linear model predictive control (MPC). The inexact-Uzawa algorithm falls into the general framework of first-order primal-dual methods but employs both proximal-point and matrix splitting schemes to derive a numerically robust algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2023, Vol.7, p.697-702
Hauptverfasser: Adegbege, Ambrose A., Harish, Nia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 702
container_issue
container_start_page 697
container_title IEEE control systems letters
container_volume 7
creator Adegbege, Ambrose A.
Harish, Nia
description In this letter, we propose an inexact-Uzawa solver for embedded linear model predictive control (MPC). The inexact-Uzawa algorithm falls into the general framework of first-order primal-dual methods but employs both proximal-point and matrix splitting schemes to derive a numerically robust algorithm with \mathcal {O} ( 1/k ) convergence rate in the primal-dual gap to some saddle-point solution where k is the iteration count. Numerical MPC example shows the efficiency and the ease of implementation of the algorithm as compared to other related methods in the literature.
doi_str_mv 10.1109/LCSYS.2022.3220594
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCSYS_2022_3220594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9941344</ieee_id><sourcerecordid>10_1109_LCSYS_2022_3220594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-107b307319b14006c41fb548adca2bb5d351a91273142b00e831b4ff4641e93d3</originalsourceid><addsrcrecordid>eNpNkN1Kw0AQhRdRsNS-gN7kBVJndidN9lJiq4WKQuyFV2E3OwuRtJFNrD9Pb2OLeHXm4nzD4RPiEmGKCPp6lRcvxVSClFMlJSSaTsRIUprESMns9N99LiZd9woAmMkUpB6JxXLLn6bq4_W3-TDRU6g3polv300TFW2z4xD5NkTzjWXn2EUPreNm32JXV3294yhvt31omwtx5k3T8eSYY7FezJ_z-3j1eLfMb1ZxhZT1MUJqFaQKtUUCmFWE3iaUGVcZaW3iVIJGo9w3SFoAzhRa8p5mhKyVU2MhD3-r0HZdYF--DYvDV4lQDjLKXxnlIKM8ythDVweoZuY_QGtCRaR-AHrVWd4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inexact-Uzawa Primal-Dual Solver for Embedded Model Predictive Control</title><source>IEEE Electronic Library (IEL)</source><creator>Adegbege, Ambrose A. ; Harish, Nia</creator><creatorcontrib>Adegbege, Ambrose A. ; Harish, Nia</creatorcontrib><description><![CDATA[In this letter, we propose an inexact-Uzawa solver for embedded linear model predictive control (MPC). The inexact-Uzawa algorithm falls into the general framework of first-order primal-dual methods but employs both proximal-point and matrix splitting schemes to derive a numerically robust algorithm with <inline-formula> <tex-math notation="LaTeX">\mathcal {O} </tex-math></inline-formula>(<inline-formula> <tex-math notation="LaTeX">1/k </tex-math></inline-formula>) convergence rate in the primal-dual gap to some saddle-point solution where <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> is the iteration count. Numerical MPC example shows the efficiency and the ease of implementation of the algorithm as compared to other related methods in the literature.]]></description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2022.3220594</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Convergence ; Convex functions ; embedded model predictive control ; Inexact Uzawa methods ; Minimization ; Prediction algorithms ; Predictive control ; primal-dual iterative methods ; Quadratic programming</subject><ispartof>IEEE control systems letters, 2023, Vol.7, p.697-702</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-107b307319b14006c41fb548adca2bb5d351a91273142b00e831b4ff4641e93d3</cites><orcidid>0000-0002-2506-644X ; 0000-0003-4026-2374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9941344$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9941344$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Adegbege, Ambrose A.</creatorcontrib><creatorcontrib>Harish, Nia</creatorcontrib><title>Inexact-Uzawa Primal-Dual Solver for Embedded Model Predictive Control</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description><![CDATA[In this letter, we propose an inexact-Uzawa solver for embedded linear model predictive control (MPC). The inexact-Uzawa algorithm falls into the general framework of first-order primal-dual methods but employs both proximal-point and matrix splitting schemes to derive a numerically robust algorithm with <inline-formula> <tex-math notation="LaTeX">\mathcal {O} </tex-math></inline-formula>(<inline-formula> <tex-math notation="LaTeX">1/k </tex-math></inline-formula>) convergence rate in the primal-dual gap to some saddle-point solution where <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> is the iteration count. Numerical MPC example shows the efficiency and the ease of implementation of the algorithm as compared to other related methods in the literature.]]></description><subject>Approximation algorithms</subject><subject>Convergence</subject><subject>Convex functions</subject><subject>embedded model predictive control</subject><subject>Inexact Uzawa methods</subject><subject>Minimization</subject><subject>Prediction algorithms</subject><subject>Predictive control</subject><subject>primal-dual iterative methods</subject><subject>Quadratic programming</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN1Kw0AQhRdRsNS-gN7kBVJndidN9lJiq4WKQuyFV2E3OwuRtJFNrD9Pb2OLeHXm4nzD4RPiEmGKCPp6lRcvxVSClFMlJSSaTsRIUprESMns9N99LiZd9woAmMkUpB6JxXLLn6bq4_W3-TDRU6g3polv300TFW2z4xD5NkTzjWXn2EUPreNm32JXV3294yhvt31omwtx5k3T8eSYY7FezJ_z-3j1eLfMb1ZxhZT1MUJqFaQKtUUCmFWE3iaUGVcZaW3iVIJGo9w3SFoAzhRa8p5mhKyVU2MhD3-r0HZdYF--DYvDV4lQDjLKXxnlIKM8ythDVweoZuY_QGtCRaR-AHrVWd4</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Adegbege, Ambrose A.</creator><creator>Harish, Nia</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2506-644X</orcidid><orcidid>https://orcid.org/0000-0003-4026-2374</orcidid></search><sort><creationdate>2023</creationdate><title>Inexact-Uzawa Primal-Dual Solver for Embedded Model Predictive Control</title><author>Adegbege, Ambrose A. ; Harish, Nia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-107b307319b14006c41fb548adca2bb5d351a91273142b00e831b4ff4641e93d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation algorithms</topic><topic>Convergence</topic><topic>Convex functions</topic><topic>embedded model predictive control</topic><topic>Inexact Uzawa methods</topic><topic>Minimization</topic><topic>Prediction algorithms</topic><topic>Predictive control</topic><topic>primal-dual iterative methods</topic><topic>Quadratic programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adegbege, Ambrose A.</creatorcontrib><creatorcontrib>Harish, Nia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adegbege, Ambrose A.</au><au>Harish, Nia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inexact-Uzawa Primal-Dual Solver for Embedded Model Predictive Control</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2023</date><risdate>2023</risdate><volume>7</volume><spage>697</spage><epage>702</epage><pages>697-702</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract><![CDATA[In this letter, we propose an inexact-Uzawa solver for embedded linear model predictive control (MPC). The inexact-Uzawa algorithm falls into the general framework of first-order primal-dual methods but employs both proximal-point and matrix splitting schemes to derive a numerically robust algorithm with <inline-formula> <tex-math notation="LaTeX">\mathcal {O} </tex-math></inline-formula>(<inline-formula> <tex-math notation="LaTeX">1/k </tex-math></inline-formula>) convergence rate in the primal-dual gap to some saddle-point solution where <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> is the iteration count. Numerical MPC example shows the efficiency and the ease of implementation of the algorithm as compared to other related methods in the literature.]]></abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2022.3220594</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2506-644X</orcidid><orcidid>https://orcid.org/0000-0003-4026-2374</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2475-1456
ispartof IEEE control systems letters, 2023, Vol.7, p.697-702
issn 2475-1456
2475-1456
language eng
recordid cdi_crossref_primary_10_1109_LCSYS_2022_3220594
source IEEE Electronic Library (IEL)
subjects Approximation algorithms
Convergence
Convex functions
embedded model predictive control
Inexact Uzawa methods
Minimization
Prediction algorithms
Predictive control
primal-dual iterative methods
Quadratic programming
title Inexact-Uzawa Primal-Dual Solver for Embedded Model Predictive Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inexact-Uzawa%20Primal-Dual%20Solver%20for%20Embedded%20Model%20Predictive%20Control&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=Adegbege,%20Ambrose%20A.&rft.date=2023&rft.volume=7&rft.spage=697&rft.epage=702&rft.pages=697-702&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2022.3220594&rft_dat=%3Ccrossref_RIE%3E10_1109_LCSYS_2022_3220594%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9941344&rfr_iscdi=true