Distributed Optimization for Rank-Constrained Semidefinite Programs

This letter develops a distributed optimization framework for solving the rank-constrained semidefinite programs (RCSPs). Since the rank constraint is non-convex and discontinuous, solving an optimization problem with rank constraints is NP-hard and notoriously time-consuming, especially for large-s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2023, Vol.7, p.103-108
Hauptverfasser: Pei, Chaoying, You, Sixiong, Sun, Chuangchuang, Dai, Ran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108
container_issue
container_start_page 103
container_title IEEE control systems letters
container_volume 7
creator Pei, Chaoying
You, Sixiong
Sun, Chuangchuang
Dai, Ran
description This letter develops a distributed optimization framework for solving the rank-constrained semidefinite programs (RCSPs). Since the rank constraint is non-convex and discontinuous, solving an optimization problem with rank constraints is NP-hard and notoriously time-consuming, especially for large-scale RCSPs. In the proposed approach, by decomposing an unknown matrix into a set of submatrices with much smaller sizes, the rank constraint on the original matrix is equivalently transformed into a set of constraints on the decomposed submatrices. The distributed framework allows parallel computation of subproblems while requiring coordination among them to satisfy the coupled constraints. As the scale of every subproblem solved independently is significantly reduced, the decomposition scheme and the distributed framework can be applied to large-scale RCSPs. Moreover, optimality conditions of the proposed distributed optimization algorithm for RCSPs at the converged point are analyzed. Finally, the efficiency and effectiveness of the proposed method are demonstrated via simulation examples for solving the image denoising problem.
doi_str_mv 10.1109/LCSYS.2022.3186939
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCSYS_2022_3186939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9810129</ieee_id><sourcerecordid>10_1109_LCSYS_2022_3186939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-98f224f3f9467bb881e49e468a29cdf8b0a42d62fa0d15267b7085dd8d1a69bc3</originalsourceid><addsrcrecordid>eNpNkL1OwzAURi0EElXpC8CSF0jwvXESe0Thp0iRiggMTJYT28hAkso2Azw9Ka0Q073DOd9wCDkHmgFQcdnU7UubIUXMcuClyMURWSCrihRYUR7_-0_JKoQ3SilwrCiKBamvXYjedZ_R6GSzjW5w3yq6aUzs5JNHNb6n9TTOiHLjTLRmcNpYN7pokgc_vXo1hDNyYtVHMKvDXZLn25unep02m7v7-qpJewQeU8EtIrO5Faysuo5zMEwYVnKFoteWd1Qx1CVaRTUUODMV5YXWXIMqRdfnS4L73d5PIXhj5da7QfkvCVTuSsjfEnJXQh5KzNLFXnLGmD9BcKCAIv8B1ZFbFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distributed Optimization for Rank-Constrained Semidefinite Programs</title><source>IEEE Electronic Library (IEL)</source><creator>Pei, Chaoying ; You, Sixiong ; Sun, Chuangchuang ; Dai, Ran</creator><creatorcontrib>Pei, Chaoying ; You, Sixiong ; Sun, Chuangchuang ; Dai, Ran</creatorcontrib><description>This letter develops a distributed optimization framework for solving the rank-constrained semidefinite programs (RCSPs). Since the rank constraint is non-convex and discontinuous, solving an optimization problem with rank constraints is NP-hard and notoriously time-consuming, especially for large-scale RCSPs. In the proposed approach, by decomposing an unknown matrix into a set of submatrices with much smaller sizes, the rank constraint on the original matrix is equivalently transformed into a set of constraints on the decomposed submatrices. The distributed framework allows parallel computation of subproblems while requiring coordination among them to satisfy the coupled constraints. As the scale of every subproblem solved independently is significantly reduced, the decomposition scheme and the distributed framework can be applied to large-scale RCSPs. Moreover, optimality conditions of the proposed distributed optimization algorithm for RCSPs at the converged point are analyzed. Finally, the efficiency and effectiveness of the proposed method are demonstrated via simulation examples for solving the image denoising problem.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2022.3186939</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convex functions ; Distributed optimization ; Eigenvalues and eigenfunctions ; Linear matrix inequalities ; Matrix decomposition ; Minimization ; Optimization ; rank-constrained optimization ; Signal processing algorithms</subject><ispartof>IEEE control systems letters, 2023, Vol.7, p.103-108</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-98f224f3f9467bb881e49e468a29cdf8b0a42d62fa0d15267b7085dd8d1a69bc3</cites><orcidid>0000-0003-3049-5828 ; 0000-0001-6791-2512 ; 0000-0001-8267-5965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9810129$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9810129$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pei, Chaoying</creatorcontrib><creatorcontrib>You, Sixiong</creatorcontrib><creatorcontrib>Sun, Chuangchuang</creatorcontrib><creatorcontrib>Dai, Ran</creatorcontrib><title>Distributed Optimization for Rank-Constrained Semidefinite Programs</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>This letter develops a distributed optimization framework for solving the rank-constrained semidefinite programs (RCSPs). Since the rank constraint is non-convex and discontinuous, solving an optimization problem with rank constraints is NP-hard and notoriously time-consuming, especially for large-scale RCSPs. In the proposed approach, by decomposing an unknown matrix into a set of submatrices with much smaller sizes, the rank constraint on the original matrix is equivalently transformed into a set of constraints on the decomposed submatrices. The distributed framework allows parallel computation of subproblems while requiring coordination among them to satisfy the coupled constraints. As the scale of every subproblem solved independently is significantly reduced, the decomposition scheme and the distributed framework can be applied to large-scale RCSPs. Moreover, optimality conditions of the proposed distributed optimization algorithm for RCSPs at the converged point are analyzed. Finally, the efficiency and effectiveness of the proposed method are demonstrated via simulation examples for solving the image denoising problem.</description><subject>Convex functions</subject><subject>Distributed optimization</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Linear matrix inequalities</subject><subject>Matrix decomposition</subject><subject>Minimization</subject><subject>Optimization</subject><subject>rank-constrained optimization</subject><subject>Signal processing algorithms</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1OwzAURi0EElXpC8CSF0jwvXESe0Thp0iRiggMTJYT28hAkso2Azw9Ka0Q073DOd9wCDkHmgFQcdnU7UubIUXMcuClyMURWSCrihRYUR7_-0_JKoQ3SilwrCiKBamvXYjedZ_R6GSzjW5w3yq6aUzs5JNHNb6n9TTOiHLjTLRmcNpYN7pokgc_vXo1hDNyYtVHMKvDXZLn25unep02m7v7-qpJewQeU8EtIrO5Faysuo5zMEwYVnKFoteWd1Qx1CVaRTUUODMV5YXWXIMqRdfnS4L73d5PIXhj5da7QfkvCVTuSsjfEnJXQh5KzNLFXnLGmD9BcKCAIv8B1ZFbFQ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Pei, Chaoying</creator><creator>You, Sixiong</creator><creator>Sun, Chuangchuang</creator><creator>Dai, Ran</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3049-5828</orcidid><orcidid>https://orcid.org/0000-0001-6791-2512</orcidid><orcidid>https://orcid.org/0000-0001-8267-5965</orcidid></search><sort><creationdate>2023</creationdate><title>Distributed Optimization for Rank-Constrained Semidefinite Programs</title><author>Pei, Chaoying ; You, Sixiong ; Sun, Chuangchuang ; Dai, Ran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-98f224f3f9467bb881e49e468a29cdf8b0a42d62fa0d15267b7085dd8d1a69bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convex functions</topic><topic>Distributed optimization</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Linear matrix inequalities</topic><topic>Matrix decomposition</topic><topic>Minimization</topic><topic>Optimization</topic><topic>rank-constrained optimization</topic><topic>Signal processing algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pei, Chaoying</creatorcontrib><creatorcontrib>You, Sixiong</creatorcontrib><creatorcontrib>Sun, Chuangchuang</creatorcontrib><creatorcontrib>Dai, Ran</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pei, Chaoying</au><au>You, Sixiong</au><au>Sun, Chuangchuang</au><au>Dai, Ran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Optimization for Rank-Constrained Semidefinite Programs</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2023</date><risdate>2023</risdate><volume>7</volume><spage>103</spage><epage>108</epage><pages>103-108</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>This letter develops a distributed optimization framework for solving the rank-constrained semidefinite programs (RCSPs). Since the rank constraint is non-convex and discontinuous, solving an optimization problem with rank constraints is NP-hard and notoriously time-consuming, especially for large-scale RCSPs. In the proposed approach, by decomposing an unknown matrix into a set of submatrices with much smaller sizes, the rank constraint on the original matrix is equivalently transformed into a set of constraints on the decomposed submatrices. The distributed framework allows parallel computation of subproblems while requiring coordination among them to satisfy the coupled constraints. As the scale of every subproblem solved independently is significantly reduced, the decomposition scheme and the distributed framework can be applied to large-scale RCSPs. Moreover, optimality conditions of the proposed distributed optimization algorithm for RCSPs at the converged point are analyzed. Finally, the efficiency and effectiveness of the proposed method are demonstrated via simulation examples for solving the image denoising problem.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2022.3186939</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3049-5828</orcidid><orcidid>https://orcid.org/0000-0001-6791-2512</orcidid><orcidid>https://orcid.org/0000-0001-8267-5965</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2475-1456
ispartof IEEE control systems letters, 2023, Vol.7, p.103-108
issn 2475-1456
2475-1456
language eng
recordid cdi_crossref_primary_10_1109_LCSYS_2022_3186939
source IEEE Electronic Library (IEL)
subjects Convex functions
Distributed optimization
Eigenvalues and eigenfunctions
Linear matrix inequalities
Matrix decomposition
Minimization
Optimization
rank-constrained optimization
Signal processing algorithms
title Distributed Optimization for Rank-Constrained Semidefinite Programs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A23%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Optimization%20for%20Rank-Constrained%20Semidefinite%20Programs&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=Pei,%20Chaoying&rft.date=2023&rft.volume=7&rft.spage=103&rft.epage=108&rft.pages=103-108&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2022.3186939&rft_dat=%3Ccrossref_RIE%3E10_1109_LCSYS_2022_3186939%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9810129&rfr_iscdi=true