Distributed Optimization for Rank-Constrained Semidefinite Programs
This letter develops a distributed optimization framework for solving the rank-constrained semidefinite programs (RCSPs). Since the rank constraint is non-convex and discontinuous, solving an optimization problem with rank constraints is NP-hard and notoriously time-consuming, especially for large-s...
Gespeichert in:
Veröffentlicht in: | IEEE control systems letters 2023, Vol.7, p.103-108 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108 |
---|---|
container_issue | |
container_start_page | 103 |
container_title | IEEE control systems letters |
container_volume | 7 |
creator | Pei, Chaoying You, Sixiong Sun, Chuangchuang Dai, Ran |
description | This letter develops a distributed optimization framework for solving the rank-constrained semidefinite programs (RCSPs). Since the rank constraint is non-convex and discontinuous, solving an optimization problem with rank constraints is NP-hard and notoriously time-consuming, especially for large-scale RCSPs. In the proposed approach, by decomposing an unknown matrix into a set of submatrices with much smaller sizes, the rank constraint on the original matrix is equivalently transformed into a set of constraints on the decomposed submatrices. The distributed framework allows parallel computation of subproblems while requiring coordination among them to satisfy the coupled constraints. As the scale of every subproblem solved independently is significantly reduced, the decomposition scheme and the distributed framework can be applied to large-scale RCSPs. Moreover, optimality conditions of the proposed distributed optimization algorithm for RCSPs at the converged point are analyzed. Finally, the efficiency and effectiveness of the proposed method are demonstrated via simulation examples for solving the image denoising problem. |
doi_str_mv | 10.1109/LCSYS.2022.3186939 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCSYS_2022_3186939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9810129</ieee_id><sourcerecordid>10_1109_LCSYS_2022_3186939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-98f224f3f9467bb881e49e468a29cdf8b0a42d62fa0d15267b7085dd8d1a69bc3</originalsourceid><addsrcrecordid>eNpNkL1OwzAURi0EElXpC8CSF0jwvXESe0Thp0iRiggMTJYT28hAkso2Azw9Ka0Q073DOd9wCDkHmgFQcdnU7UubIUXMcuClyMURWSCrihRYUR7_-0_JKoQ3SilwrCiKBamvXYjedZ_R6GSzjW5w3yq6aUzs5JNHNb6n9TTOiHLjTLRmcNpYN7pokgc_vXo1hDNyYtVHMKvDXZLn25unep02m7v7-qpJewQeU8EtIrO5Faysuo5zMEwYVnKFoteWd1Qx1CVaRTUUODMV5YXWXIMqRdfnS4L73d5PIXhj5da7QfkvCVTuSsjfEnJXQh5KzNLFXnLGmD9BcKCAIv8B1ZFbFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distributed Optimization for Rank-Constrained Semidefinite Programs</title><source>IEEE Electronic Library (IEL)</source><creator>Pei, Chaoying ; You, Sixiong ; Sun, Chuangchuang ; Dai, Ran</creator><creatorcontrib>Pei, Chaoying ; You, Sixiong ; Sun, Chuangchuang ; Dai, Ran</creatorcontrib><description>This letter develops a distributed optimization framework for solving the rank-constrained semidefinite programs (RCSPs). Since the rank constraint is non-convex and discontinuous, solving an optimization problem with rank constraints is NP-hard and notoriously time-consuming, especially for large-scale RCSPs. In the proposed approach, by decomposing an unknown matrix into a set of submatrices with much smaller sizes, the rank constraint on the original matrix is equivalently transformed into a set of constraints on the decomposed submatrices. The distributed framework allows parallel computation of subproblems while requiring coordination among them to satisfy the coupled constraints. As the scale of every subproblem solved independently is significantly reduced, the decomposition scheme and the distributed framework can be applied to large-scale RCSPs. Moreover, optimality conditions of the proposed distributed optimization algorithm for RCSPs at the converged point are analyzed. Finally, the efficiency and effectiveness of the proposed method are demonstrated via simulation examples for solving the image denoising problem.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2022.3186939</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convex functions ; Distributed optimization ; Eigenvalues and eigenfunctions ; Linear matrix inequalities ; Matrix decomposition ; Minimization ; Optimization ; rank-constrained optimization ; Signal processing algorithms</subject><ispartof>IEEE control systems letters, 2023, Vol.7, p.103-108</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-98f224f3f9467bb881e49e468a29cdf8b0a42d62fa0d15267b7085dd8d1a69bc3</cites><orcidid>0000-0003-3049-5828 ; 0000-0001-6791-2512 ; 0000-0001-8267-5965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9810129$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9810129$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pei, Chaoying</creatorcontrib><creatorcontrib>You, Sixiong</creatorcontrib><creatorcontrib>Sun, Chuangchuang</creatorcontrib><creatorcontrib>Dai, Ran</creatorcontrib><title>Distributed Optimization for Rank-Constrained Semidefinite Programs</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>This letter develops a distributed optimization framework for solving the rank-constrained semidefinite programs (RCSPs). Since the rank constraint is non-convex and discontinuous, solving an optimization problem with rank constraints is NP-hard and notoriously time-consuming, especially for large-scale RCSPs. In the proposed approach, by decomposing an unknown matrix into a set of submatrices with much smaller sizes, the rank constraint on the original matrix is equivalently transformed into a set of constraints on the decomposed submatrices. The distributed framework allows parallel computation of subproblems while requiring coordination among them to satisfy the coupled constraints. As the scale of every subproblem solved independently is significantly reduced, the decomposition scheme and the distributed framework can be applied to large-scale RCSPs. Moreover, optimality conditions of the proposed distributed optimization algorithm for RCSPs at the converged point are analyzed. Finally, the efficiency and effectiveness of the proposed method are demonstrated via simulation examples for solving the image denoising problem.</description><subject>Convex functions</subject><subject>Distributed optimization</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Linear matrix inequalities</subject><subject>Matrix decomposition</subject><subject>Minimization</subject><subject>Optimization</subject><subject>rank-constrained optimization</subject><subject>Signal processing algorithms</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1OwzAURi0EElXpC8CSF0jwvXESe0Thp0iRiggMTJYT28hAkso2Azw9Ka0Q073DOd9wCDkHmgFQcdnU7UubIUXMcuClyMURWSCrihRYUR7_-0_JKoQ3SilwrCiKBamvXYjedZ_R6GSzjW5w3yq6aUzs5JNHNb6n9TTOiHLjTLRmcNpYN7pokgc_vXo1hDNyYtVHMKvDXZLn25unep02m7v7-qpJewQeU8EtIrO5Faysuo5zMEwYVnKFoteWd1Qx1CVaRTUUODMV5YXWXIMqRdfnS4L73d5PIXhj5da7QfkvCVTuSsjfEnJXQh5KzNLFXnLGmD9BcKCAIv8B1ZFbFQ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Pei, Chaoying</creator><creator>You, Sixiong</creator><creator>Sun, Chuangchuang</creator><creator>Dai, Ran</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3049-5828</orcidid><orcidid>https://orcid.org/0000-0001-6791-2512</orcidid><orcidid>https://orcid.org/0000-0001-8267-5965</orcidid></search><sort><creationdate>2023</creationdate><title>Distributed Optimization for Rank-Constrained Semidefinite Programs</title><author>Pei, Chaoying ; You, Sixiong ; Sun, Chuangchuang ; Dai, Ran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-98f224f3f9467bb881e49e468a29cdf8b0a42d62fa0d15267b7085dd8d1a69bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convex functions</topic><topic>Distributed optimization</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Linear matrix inequalities</topic><topic>Matrix decomposition</topic><topic>Minimization</topic><topic>Optimization</topic><topic>rank-constrained optimization</topic><topic>Signal processing algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pei, Chaoying</creatorcontrib><creatorcontrib>You, Sixiong</creatorcontrib><creatorcontrib>Sun, Chuangchuang</creatorcontrib><creatorcontrib>Dai, Ran</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pei, Chaoying</au><au>You, Sixiong</au><au>Sun, Chuangchuang</au><au>Dai, Ran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Optimization for Rank-Constrained Semidefinite Programs</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2023</date><risdate>2023</risdate><volume>7</volume><spage>103</spage><epage>108</epage><pages>103-108</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>This letter develops a distributed optimization framework for solving the rank-constrained semidefinite programs (RCSPs). Since the rank constraint is non-convex and discontinuous, solving an optimization problem with rank constraints is NP-hard and notoriously time-consuming, especially for large-scale RCSPs. In the proposed approach, by decomposing an unknown matrix into a set of submatrices with much smaller sizes, the rank constraint on the original matrix is equivalently transformed into a set of constraints on the decomposed submatrices. The distributed framework allows parallel computation of subproblems while requiring coordination among them to satisfy the coupled constraints. As the scale of every subproblem solved independently is significantly reduced, the decomposition scheme and the distributed framework can be applied to large-scale RCSPs. Moreover, optimality conditions of the proposed distributed optimization algorithm for RCSPs at the converged point are analyzed. Finally, the efficiency and effectiveness of the proposed method are demonstrated via simulation examples for solving the image denoising problem.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2022.3186939</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3049-5828</orcidid><orcidid>https://orcid.org/0000-0001-6791-2512</orcidid><orcidid>https://orcid.org/0000-0001-8267-5965</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2475-1456 |
ispartof | IEEE control systems letters, 2023, Vol.7, p.103-108 |
issn | 2475-1456 2475-1456 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LCSYS_2022_3186939 |
source | IEEE Electronic Library (IEL) |
subjects | Convex functions Distributed optimization Eigenvalues and eigenfunctions Linear matrix inequalities Matrix decomposition Minimization Optimization rank-constrained optimization Signal processing algorithms |
title | Distributed Optimization for Rank-Constrained Semidefinite Programs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A23%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Optimization%20for%20Rank-Constrained%20Semidefinite%20Programs&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=Pei,%20Chaoying&rft.date=2023&rft.volume=7&rft.spage=103&rft.epage=108&rft.pages=103-108&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2022.3186939&rft_dat=%3Ccrossref_RIE%3E10_1109_LCSYS_2022_3186939%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9810129&rfr_iscdi=true |