A Class of High Order Tuners for Adaptive Systems

Parameter estimation algorithms using higher order gradient-based methods are increasingly sought after in machine learning. Such methods however, may become unstable when regressors are time-varying. Inspired by techniques employed in adaptive systems, this letter proposes a new variational perspec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2021-04, Vol.5 (2), p.391-396
Hauptverfasser: Gaudio, Joseph E., Annaswamy, Anuradha M., Bolender, Michael A., Lavretsky, Eugene, Gibson, Travis E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 396
container_issue 2
container_start_page 391
container_title IEEE control systems letters
container_volume 5
creator Gaudio, Joseph E.
Annaswamy, Anuradha M.
Bolender, Michael A.
Lavretsky, Eugene
Gibson, Travis E.
description Parameter estimation algorithms using higher order gradient-based methods are increasingly sought after in machine learning. Such methods however, may become unstable when regressors are time-varying. Inspired by techniques employed in adaptive systems, this letter proposes a new variational perspective to derive four higher order tuners with provable stability guarantees. This perspective includes concepts based on higher order tuners and normalization and allows stability to be established for problems with time-varying regressors. The stability analysis builds on a novel technique which stems from symplectic mechanics, that links Lagrangians and Hamiltonians to the underlying Lyapunov stability analysis, and is provided for common linear-in-parameter models.
doi_str_mv 10.1109/LCSYS.2020.3002513
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCSYS_2020_3002513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9119094</ieee_id><sourcerecordid>10_1109_LCSYS_2020_3002513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-ec7ceecf93152e748a376cf934ca8740e5209a637824a87611965a60eeb2125e3</originalsourceid><addsrcrecordid>eNpNj81Kw0AUhQdRsNS-gG7mBRLv3PnLLENQWwh0kbpwFcb0RiOtKTNR6Nub2CKuzj0XvgMfY7cCUiHA3ZdF9VKlCAipBEAt5AWbobI6EUqby3_3NVvE-AEAIkML6GZM5LzY-Rh53_Jl9_bO12FLgW--PilE3vaB51t_GLpv4tUxDrSPN-yq9btIi3PO2fPjw6ZYJuX6aVXkZdKgsUNCjW2ImtZJoZGsyry0Zqqq8ZlVQBrBeSNthmp8GCGc0d4A0SsK1CTnDE-7TehjDNTWh9DtfTjWAurJu_71rifv-uw9QncnqCOiP8CN4-CU_AGzXFHt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Class of High Order Tuners for Adaptive Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Gaudio, Joseph E. ; Annaswamy, Anuradha M. ; Bolender, Michael A. ; Lavretsky, Eugene ; Gibson, Travis E.</creator><creatorcontrib>Gaudio, Joseph E. ; Annaswamy, Anuradha M. ; Bolender, Michael A. ; Lavretsky, Eugene ; Gibson, Travis E.</creatorcontrib><description>Parameter estimation algorithms using higher order gradient-based methods are increasingly sought after in machine learning. Such methods however, may become unstable when regressors are time-varying. Inspired by techniques employed in adaptive systems, this letter proposes a new variational perspective to derive four higher order tuners with provable stability guarantees. This perspective includes concepts based on higher order tuners and normalization and allows stability to be established for problems with time-varying regressors. The stability analysis builds on a novel technique which stems from symplectic mechanics, that links Lagrangians and Hamiltonians to the underlying Lyapunov stability analysis, and is provided for common linear-in-parameter models.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2020.3002513</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive systems ; Differential equations ; Lyapunov methods ; Machine learning ; Machine learning algorithms ; Stability analysis ; Tuners ; uncertain systems</subject><ispartof>IEEE control systems letters, 2021-04, Vol.5 (2), p.391-396</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-ec7ceecf93152e748a376cf934ca8740e5209a637824a87611965a60eeb2125e3</citedby><cites>FETCH-LOGICAL-c267t-ec7ceecf93152e748a376cf934ca8740e5209a637824a87611965a60eeb2125e3</cites><orcidid>0000-0003-0443-786X ; 0000-0003-0320-8010 ; 0000-0002-4354-0459 ; 0000-0002-9557-0414 ; 0000-0001-5471-6571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9119094$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9119094$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gaudio, Joseph E.</creatorcontrib><creatorcontrib>Annaswamy, Anuradha M.</creatorcontrib><creatorcontrib>Bolender, Michael A.</creatorcontrib><creatorcontrib>Lavretsky, Eugene</creatorcontrib><creatorcontrib>Gibson, Travis E.</creatorcontrib><title>A Class of High Order Tuners for Adaptive Systems</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>Parameter estimation algorithms using higher order gradient-based methods are increasingly sought after in machine learning. Such methods however, may become unstable when regressors are time-varying. Inspired by techniques employed in adaptive systems, this letter proposes a new variational perspective to derive four higher order tuners with provable stability guarantees. This perspective includes concepts based on higher order tuners and normalization and allows stability to be established for problems with time-varying regressors. The stability analysis builds on a novel technique which stems from symplectic mechanics, that links Lagrangians and Hamiltonians to the underlying Lyapunov stability analysis, and is provided for common linear-in-parameter models.</description><subject>Adaptive systems</subject><subject>Differential equations</subject><subject>Lyapunov methods</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Stability analysis</subject><subject>Tuners</subject><subject>uncertain systems</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNj81Kw0AUhQdRsNS-gG7mBRLv3PnLLENQWwh0kbpwFcb0RiOtKTNR6Nub2CKuzj0XvgMfY7cCUiHA3ZdF9VKlCAipBEAt5AWbobI6EUqby3_3NVvE-AEAIkML6GZM5LzY-Rh53_Jl9_bO12FLgW--PilE3vaB51t_GLpv4tUxDrSPN-yq9btIi3PO2fPjw6ZYJuX6aVXkZdKgsUNCjW2ImtZJoZGsyry0Zqqq8ZlVQBrBeSNthmp8GCGc0d4A0SsK1CTnDE-7TehjDNTWh9DtfTjWAurJu_71rifv-uw9QncnqCOiP8CN4-CU_AGzXFHt</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Gaudio, Joseph E.</creator><creator>Annaswamy, Anuradha M.</creator><creator>Bolender, Michael A.</creator><creator>Lavretsky, Eugene</creator><creator>Gibson, Travis E.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0443-786X</orcidid><orcidid>https://orcid.org/0000-0003-0320-8010</orcidid><orcidid>https://orcid.org/0000-0002-4354-0459</orcidid><orcidid>https://orcid.org/0000-0002-9557-0414</orcidid><orcidid>https://orcid.org/0000-0001-5471-6571</orcidid></search><sort><creationdate>202104</creationdate><title>A Class of High Order Tuners for Adaptive Systems</title><author>Gaudio, Joseph E. ; Annaswamy, Anuradha M. ; Bolender, Michael A. ; Lavretsky, Eugene ; Gibson, Travis E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-ec7ceecf93152e748a376cf934ca8740e5209a637824a87611965a60eeb2125e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive systems</topic><topic>Differential equations</topic><topic>Lyapunov methods</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Stability analysis</topic><topic>Tuners</topic><topic>uncertain systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaudio, Joseph E.</creatorcontrib><creatorcontrib>Annaswamy, Anuradha M.</creatorcontrib><creatorcontrib>Bolender, Michael A.</creatorcontrib><creatorcontrib>Lavretsky, Eugene</creatorcontrib><creatorcontrib>Gibson, Travis E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gaudio, Joseph E.</au><au>Annaswamy, Anuradha M.</au><au>Bolender, Michael A.</au><au>Lavretsky, Eugene</au><au>Gibson, Travis E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Class of High Order Tuners for Adaptive Systems</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2021-04</date><risdate>2021</risdate><volume>5</volume><issue>2</issue><spage>391</spage><epage>396</epage><pages>391-396</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>Parameter estimation algorithms using higher order gradient-based methods are increasingly sought after in machine learning. Such methods however, may become unstable when regressors are time-varying. Inspired by techniques employed in adaptive systems, this letter proposes a new variational perspective to derive four higher order tuners with provable stability guarantees. This perspective includes concepts based on higher order tuners and normalization and allows stability to be established for problems with time-varying regressors. The stability analysis builds on a novel technique which stems from symplectic mechanics, that links Lagrangians and Hamiltonians to the underlying Lyapunov stability analysis, and is provided for common linear-in-parameter models.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2020.3002513</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0443-786X</orcidid><orcidid>https://orcid.org/0000-0003-0320-8010</orcidid><orcidid>https://orcid.org/0000-0002-4354-0459</orcidid><orcidid>https://orcid.org/0000-0002-9557-0414</orcidid><orcidid>https://orcid.org/0000-0001-5471-6571</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2475-1456
ispartof IEEE control systems letters, 2021-04, Vol.5 (2), p.391-396
issn 2475-1456
2475-1456
language eng
recordid cdi_crossref_primary_10_1109_LCSYS_2020_3002513
source IEEE Electronic Library (IEL)
subjects Adaptive systems
Differential equations
Lyapunov methods
Machine learning
Machine learning algorithms
Stability analysis
Tuners
uncertain systems
title A Class of High Order Tuners for Adaptive Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Class%20of%20High%20Order%20Tuners%20for%20Adaptive%20Systems&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=Gaudio,%20Joseph%20E.&rft.date=2021-04&rft.volume=5&rft.issue=2&rft.spage=391&rft.epage=396&rft.pages=391-396&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2020.3002513&rft_dat=%3Ccrossref_RIE%3E10_1109_LCSYS_2020_3002513%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9119094&rfr_iscdi=true