Asymptotic Optimality of a Time Optimal Path Parametrization Algorithm
The time optimal path parametrization problem addresses minimizing the traversal time of a specified path by an actuation constrained agent. Recently, an efficient numerical algorithm for solving this problem has been proposed. This letter theoretically establishes convergence of the former algorith...
Gespeichert in:
Veröffentlicht in: | IEEE control systems letters 2019-10, Vol.3 (4), p.835-840 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 840 |
---|---|
container_issue | 4 |
container_start_page | 835 |
container_title | IEEE control systems letters |
container_volume | 3 |
creator | Spasojevic, Igor Murali, Varun Karaman, Sertac |
description | The time optimal path parametrization problem addresses minimizing the traversal time of a specified path by an actuation constrained agent. Recently, an efficient numerical algorithm for solving this problem has been proposed. This letter theoretically establishes convergence of the former algorithm to the optimum for the whole class of problems solved optimally by computationally more demanding approaches based on convex programming. Additionally, we provide a characterization of the optimum, which may be of independent interest. |
doi_str_mv | 10.1109/LCSYS.2019.2919809 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCSYS_2019_2919809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8725517</ieee_id><sourcerecordid>10_1109_LCSYS_2019_2919809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-be8a6cecf84ae8733985ccc388f30ad968db2d641d5744198a05477bf2e143843</originalsourceid><addsrcrecordid>eNpNkM9KxDAQh4MouKz7AnrJC7Tmb5McS3FVWFhh14OnkKapG2ltSXKpT2_XXcXLzPCDb5j5ALjFKMcYqftNtXvb5QRhlROFlUTqAiwIEzzDjBeX_-ZrsIrxAyGEJRGIqAVYl3HqxzQkb-F2TL43nU8THFpo4N737jeELyYd5hJM71LwXyb54ROW3fsQfDr0N-CqNV10q3Nfgtf1w756yjbbx-eq3GSWFCJltZOmsM62khknBaVKcmstlbKlyDSqkE1NmoLhhgvG5lcM4kyIuiUOMyoZXQJy2mvDEGNwrR7DfF6YNEb6KEP_yNBHGfosY4buTpB3zv0BUhDOsaDfxoxbnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic Optimality of a Time Optimal Path Parametrization Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Spasojevic, Igor ; Murali, Varun ; Karaman, Sertac</creator><creatorcontrib>Spasojevic, Igor ; Murali, Varun ; Karaman, Sertac</creatorcontrib><description>The time optimal path parametrization problem addresses minimizing the traversal time of a specified path by an actuation constrained agent. Recently, an efficient numerical algorithm for solving this problem has been proposed. This letter theoretically establishes convergence of the former algorithm to the optimum for the whole class of problems solved optimally by computationally more demanding approaches based on convex programming. Additionally, we provide a characterization of the optimum, which may be of independent interest.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2019.2919809</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Automobiles ; Convex functions ; Indexes ; Numerical algorithms ; optimal control ; robotics ; Robots ; Switches ; Upper bound</subject><ispartof>IEEE control systems letters, 2019-10, Vol.3 (4), p.835-840</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-be8a6cecf84ae8733985ccc388f30ad968db2d641d5744198a05477bf2e143843</citedby><cites>FETCH-LOGICAL-c267t-be8a6cecf84ae8733985ccc388f30ad968db2d641d5744198a05477bf2e143843</cites><orcidid>0000-0002-1035-9557 ; 0000-0002-2225-7275 ; 0000-0001-8522-3569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8725517$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8725517$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Spasojevic, Igor</creatorcontrib><creatorcontrib>Murali, Varun</creatorcontrib><creatorcontrib>Karaman, Sertac</creatorcontrib><title>Asymptotic Optimality of a Time Optimal Path Parametrization Algorithm</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>The time optimal path parametrization problem addresses minimizing the traversal time of a specified path by an actuation constrained agent. Recently, an efficient numerical algorithm for solving this problem has been proposed. This letter theoretically establishes convergence of the former algorithm to the optimum for the whole class of problems solved optimally by computationally more demanding approaches based on convex programming. Additionally, we provide a characterization of the optimum, which may be of independent interest.</description><subject>Acceleration</subject><subject>Automobiles</subject><subject>Convex functions</subject><subject>Indexes</subject><subject>Numerical algorithms</subject><subject>optimal control</subject><subject>robotics</subject><subject>Robots</subject><subject>Switches</subject><subject>Upper bound</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9KxDAQh4MouKz7AnrJC7Tmb5McS3FVWFhh14OnkKapG2ltSXKpT2_XXcXLzPCDb5j5ALjFKMcYqftNtXvb5QRhlROFlUTqAiwIEzzDjBeX_-ZrsIrxAyGEJRGIqAVYl3HqxzQkb-F2TL43nU8THFpo4N737jeELyYd5hJM71LwXyb54ROW3fsQfDr0N-CqNV10q3Nfgtf1w756yjbbx-eq3GSWFCJltZOmsM62khknBaVKcmstlbKlyDSqkE1NmoLhhgvG5lcM4kyIuiUOMyoZXQJy2mvDEGNwrR7DfF6YNEb6KEP_yNBHGfosY4buTpB3zv0BUhDOsaDfxoxbnQ</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Spasojevic, Igor</creator><creator>Murali, Varun</creator><creator>Karaman, Sertac</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1035-9557</orcidid><orcidid>https://orcid.org/0000-0002-2225-7275</orcidid><orcidid>https://orcid.org/0000-0001-8522-3569</orcidid></search><sort><creationdate>201910</creationdate><title>Asymptotic Optimality of a Time Optimal Path Parametrization Algorithm</title><author>Spasojevic, Igor ; Murali, Varun ; Karaman, Sertac</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-be8a6cecf84ae8733985ccc388f30ad968db2d641d5744198a05477bf2e143843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Automobiles</topic><topic>Convex functions</topic><topic>Indexes</topic><topic>Numerical algorithms</topic><topic>optimal control</topic><topic>robotics</topic><topic>Robots</topic><topic>Switches</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spasojevic, Igor</creatorcontrib><creatorcontrib>Murali, Varun</creatorcontrib><creatorcontrib>Karaman, Sertac</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Spasojevic, Igor</au><au>Murali, Varun</au><au>Karaman, Sertac</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Optimality of a Time Optimal Path Parametrization Algorithm</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2019-10</date><risdate>2019</risdate><volume>3</volume><issue>4</issue><spage>835</spage><epage>840</epage><pages>835-840</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>The time optimal path parametrization problem addresses minimizing the traversal time of a specified path by an actuation constrained agent. Recently, an efficient numerical algorithm for solving this problem has been proposed. This letter theoretically establishes convergence of the former algorithm to the optimum for the whole class of problems solved optimally by computationally more demanding approaches based on convex programming. Additionally, we provide a characterization of the optimum, which may be of independent interest.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2019.2919809</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1035-9557</orcidid><orcidid>https://orcid.org/0000-0002-2225-7275</orcidid><orcidid>https://orcid.org/0000-0001-8522-3569</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2475-1456 |
ispartof | IEEE control systems letters, 2019-10, Vol.3 (4), p.835-840 |
issn | 2475-1456 2475-1456 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LCSYS_2019_2919809 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Automobiles Convex functions Indexes Numerical algorithms optimal control robotics Robots Switches Upper bound |
title | Asymptotic Optimality of a Time Optimal Path Parametrization Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Optimality%20of%20a%20Time%20Optimal%20Path%20Parametrization%20Algorithm&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=Spasojevic,%20Igor&rft.date=2019-10&rft.volume=3&rft.issue=4&rft.spage=835&rft.epage=840&rft.pages=835-840&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2019.2919809&rft_dat=%3Ccrossref_RIE%3E10_1109_LCSYS_2019_2919809%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8725517&rfr_iscdi=true |