Asymptotic Optimality of a Time Optimal Path Parametrization Algorithm

The time optimal path parametrization problem addresses minimizing the traversal time of a specified path by an actuation constrained agent. Recently, an efficient numerical algorithm for solving this problem has been proposed. This letter theoretically establishes convergence of the former algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2019-10, Vol.3 (4), p.835-840
Hauptverfasser: Spasojevic, Igor, Murali, Varun, Karaman, Sertac
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 840
container_issue 4
container_start_page 835
container_title IEEE control systems letters
container_volume 3
creator Spasojevic, Igor
Murali, Varun
Karaman, Sertac
description The time optimal path parametrization problem addresses minimizing the traversal time of a specified path by an actuation constrained agent. Recently, an efficient numerical algorithm for solving this problem has been proposed. This letter theoretically establishes convergence of the former algorithm to the optimum for the whole class of problems solved optimally by computationally more demanding approaches based on convex programming. Additionally, we provide a characterization of the optimum, which may be of independent interest.
doi_str_mv 10.1109/LCSYS.2019.2919809
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCSYS_2019_2919809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8725517</ieee_id><sourcerecordid>10_1109_LCSYS_2019_2919809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-be8a6cecf84ae8733985ccc388f30ad968db2d641d5744198a05477bf2e143843</originalsourceid><addsrcrecordid>eNpNkM9KxDAQh4MouKz7AnrJC7Tmb5McS3FVWFhh14OnkKapG2ltSXKpT2_XXcXLzPCDb5j5ALjFKMcYqftNtXvb5QRhlROFlUTqAiwIEzzDjBeX_-ZrsIrxAyGEJRGIqAVYl3HqxzQkb-F2TL43nU8THFpo4N737jeELyYd5hJM71LwXyb54ROW3fsQfDr0N-CqNV10q3Nfgtf1w756yjbbx-eq3GSWFCJltZOmsM62khknBaVKcmstlbKlyDSqkE1NmoLhhgvG5lcM4kyIuiUOMyoZXQJy2mvDEGNwrR7DfF6YNEb6KEP_yNBHGfosY4buTpB3zv0BUhDOsaDfxoxbnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic Optimality of a Time Optimal Path Parametrization Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Spasojevic, Igor ; Murali, Varun ; Karaman, Sertac</creator><creatorcontrib>Spasojevic, Igor ; Murali, Varun ; Karaman, Sertac</creatorcontrib><description>The time optimal path parametrization problem addresses minimizing the traversal time of a specified path by an actuation constrained agent. Recently, an efficient numerical algorithm for solving this problem has been proposed. This letter theoretically establishes convergence of the former algorithm to the optimum for the whole class of problems solved optimally by computationally more demanding approaches based on convex programming. Additionally, we provide a characterization of the optimum, which may be of independent interest.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2019.2919809</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Automobiles ; Convex functions ; Indexes ; Numerical algorithms ; optimal control ; robotics ; Robots ; Switches ; Upper bound</subject><ispartof>IEEE control systems letters, 2019-10, Vol.3 (4), p.835-840</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-be8a6cecf84ae8733985ccc388f30ad968db2d641d5744198a05477bf2e143843</citedby><cites>FETCH-LOGICAL-c267t-be8a6cecf84ae8733985ccc388f30ad968db2d641d5744198a05477bf2e143843</cites><orcidid>0000-0002-1035-9557 ; 0000-0002-2225-7275 ; 0000-0001-8522-3569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8725517$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8725517$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Spasojevic, Igor</creatorcontrib><creatorcontrib>Murali, Varun</creatorcontrib><creatorcontrib>Karaman, Sertac</creatorcontrib><title>Asymptotic Optimality of a Time Optimal Path Parametrization Algorithm</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>The time optimal path parametrization problem addresses minimizing the traversal time of a specified path by an actuation constrained agent. Recently, an efficient numerical algorithm for solving this problem has been proposed. This letter theoretically establishes convergence of the former algorithm to the optimum for the whole class of problems solved optimally by computationally more demanding approaches based on convex programming. Additionally, we provide a characterization of the optimum, which may be of independent interest.</description><subject>Acceleration</subject><subject>Automobiles</subject><subject>Convex functions</subject><subject>Indexes</subject><subject>Numerical algorithms</subject><subject>optimal control</subject><subject>robotics</subject><subject>Robots</subject><subject>Switches</subject><subject>Upper bound</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9KxDAQh4MouKz7AnrJC7Tmb5McS3FVWFhh14OnkKapG2ltSXKpT2_XXcXLzPCDb5j5ALjFKMcYqftNtXvb5QRhlROFlUTqAiwIEzzDjBeX_-ZrsIrxAyGEJRGIqAVYl3HqxzQkb-F2TL43nU8THFpo4N737jeELyYd5hJM71LwXyb54ROW3fsQfDr0N-CqNV10q3Nfgtf1w756yjbbx-eq3GSWFCJltZOmsM62khknBaVKcmstlbKlyDSqkE1NmoLhhgvG5lcM4kyIuiUOMyoZXQJy2mvDEGNwrR7DfF6YNEb6KEP_yNBHGfosY4buTpB3zv0BUhDOsaDfxoxbnQ</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Spasojevic, Igor</creator><creator>Murali, Varun</creator><creator>Karaman, Sertac</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1035-9557</orcidid><orcidid>https://orcid.org/0000-0002-2225-7275</orcidid><orcidid>https://orcid.org/0000-0001-8522-3569</orcidid></search><sort><creationdate>201910</creationdate><title>Asymptotic Optimality of a Time Optimal Path Parametrization Algorithm</title><author>Spasojevic, Igor ; Murali, Varun ; Karaman, Sertac</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-be8a6cecf84ae8733985ccc388f30ad968db2d641d5744198a05477bf2e143843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Automobiles</topic><topic>Convex functions</topic><topic>Indexes</topic><topic>Numerical algorithms</topic><topic>optimal control</topic><topic>robotics</topic><topic>Robots</topic><topic>Switches</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spasojevic, Igor</creatorcontrib><creatorcontrib>Murali, Varun</creatorcontrib><creatorcontrib>Karaman, Sertac</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Spasojevic, Igor</au><au>Murali, Varun</au><au>Karaman, Sertac</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Optimality of a Time Optimal Path Parametrization Algorithm</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2019-10</date><risdate>2019</risdate><volume>3</volume><issue>4</issue><spage>835</spage><epage>840</epage><pages>835-840</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>The time optimal path parametrization problem addresses minimizing the traversal time of a specified path by an actuation constrained agent. Recently, an efficient numerical algorithm for solving this problem has been proposed. This letter theoretically establishes convergence of the former algorithm to the optimum for the whole class of problems solved optimally by computationally more demanding approaches based on convex programming. Additionally, we provide a characterization of the optimum, which may be of independent interest.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2019.2919809</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1035-9557</orcidid><orcidid>https://orcid.org/0000-0002-2225-7275</orcidid><orcidid>https://orcid.org/0000-0001-8522-3569</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2475-1456
ispartof IEEE control systems letters, 2019-10, Vol.3 (4), p.835-840
issn 2475-1456
2475-1456
language eng
recordid cdi_crossref_primary_10_1109_LCSYS_2019_2919809
source IEEE Electronic Library (IEL)
subjects Acceleration
Automobiles
Convex functions
Indexes
Numerical algorithms
optimal control
robotics
Robots
Switches
Upper bound
title Asymptotic Optimality of a Time Optimal Path Parametrization Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Optimality%20of%20a%20Time%20Optimal%20Path%20Parametrization%20Algorithm&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=Spasojevic,%20Igor&rft.date=2019-10&rft.volume=3&rft.issue=4&rft.spage=835&rft.epage=840&rft.pages=835-840&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2019.2919809&rft_dat=%3Ccrossref_RIE%3E10_1109_LCSYS_2019_2919809%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8725517&rfr_iscdi=true